SELECTING A HIGH COVERAGE DATASET
Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of da...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | APPUGLIESE, CARLO Basak, Aindrila Reinwald, Berthold Arremsetty, Dheeraj Mahjour, Adrian Quader, Shaikh Shahriar Novotny, Petr |
description | Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of datapoints associated with the dataset, training a first iteration of a machine learning model using a first data point selected according to the density, determining a first value of the evaluation metric for the first iteration of the machine learning model, generating a representative subset based on the first value of the evaluation metric value, and providing the representative dataset and a final machine learning model trained using the representative dataset. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024070522A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024070522A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024070522A13</originalsourceid><addsrcrecordid>eNrjZFAMdvVxdQ7x9HNXcFTw8HT3UHD2D3MNcnR3VXBxDHEMdg3hYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmBuYGpkZGjobGxKkCAHxJIr0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SELECTING A HIGH COVERAGE DATASET</title><source>esp@cenet</source><creator>APPUGLIESE, CARLO ; Basak, Aindrila ; Reinwald, Berthold ; Arremsetty, Dheeraj ; Mahjour, Adrian ; Quader, Shaikh Shahriar ; Novotny, Petr</creator><creatorcontrib>APPUGLIESE, CARLO ; Basak, Aindrila ; Reinwald, Berthold ; Arremsetty, Dheeraj ; Mahjour, Adrian ; Quader, Shaikh Shahriar ; Novotny, Petr</creatorcontrib><description>Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of datapoints associated with the dataset, training a first iteration of a machine learning model using a first data point selected according to the density, determining a first value of the evaluation metric for the first iteration of the machine learning model, generating a representative subset based on the first value of the evaluation metric value, and providing the representative dataset and a final machine learning model trained using the representative dataset.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240229&DB=EPODOC&CC=US&NR=2024070522A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240229&DB=EPODOC&CC=US&NR=2024070522A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>APPUGLIESE, CARLO</creatorcontrib><creatorcontrib>Basak, Aindrila</creatorcontrib><creatorcontrib>Reinwald, Berthold</creatorcontrib><creatorcontrib>Arremsetty, Dheeraj</creatorcontrib><creatorcontrib>Mahjour, Adrian</creatorcontrib><creatorcontrib>Quader, Shaikh Shahriar</creatorcontrib><creatorcontrib>Novotny, Petr</creatorcontrib><title>SELECTING A HIGH COVERAGE DATASET</title><description>Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of datapoints associated with the dataset, training a first iteration of a machine learning model using a first data point selected according to the density, determining a first value of the evaluation metric for the first iteration of the machine learning model, generating a representative subset based on the first value of the evaluation metric value, and providing the representative dataset and a final machine learning model trained using the representative dataset.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAMdvVxdQ7x9HNXcFTw8HT3UHD2D3MNcnR3VXBxDHEMdg3hYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYmBuYGpkZGjobGxKkCAHxJIr0</recordid><startdate>20240229</startdate><enddate>20240229</enddate><creator>APPUGLIESE, CARLO</creator><creator>Basak, Aindrila</creator><creator>Reinwald, Berthold</creator><creator>Arremsetty, Dheeraj</creator><creator>Mahjour, Adrian</creator><creator>Quader, Shaikh Shahriar</creator><creator>Novotny, Petr</creator><scope>EVB</scope></search><sort><creationdate>20240229</creationdate><title>SELECTING A HIGH COVERAGE DATASET</title><author>APPUGLIESE, CARLO ; Basak, Aindrila ; Reinwald, Berthold ; Arremsetty, Dheeraj ; Mahjour, Adrian ; Quader, Shaikh Shahriar ; Novotny, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024070522A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>APPUGLIESE, CARLO</creatorcontrib><creatorcontrib>Basak, Aindrila</creatorcontrib><creatorcontrib>Reinwald, Berthold</creatorcontrib><creatorcontrib>Arremsetty, Dheeraj</creatorcontrib><creatorcontrib>Mahjour, Adrian</creatorcontrib><creatorcontrib>Quader, Shaikh Shahriar</creatorcontrib><creatorcontrib>Novotny, Petr</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>APPUGLIESE, CARLO</au><au>Basak, Aindrila</au><au>Reinwald, Berthold</au><au>Arremsetty, Dheeraj</au><au>Mahjour, Adrian</au><au>Quader, Shaikh Shahriar</au><au>Novotny, Petr</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SELECTING A HIGH COVERAGE DATASET</title><date>2024-02-29</date><risdate>2024</risdate><abstract>Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of datapoints associated with the dataset, training a first iteration of a machine learning model using a first data point selected according to the density, determining a first value of the evaluation metric for the first iteration of the machine learning model, generating a representative subset based on the first value of the evaluation metric value, and providing the representative dataset and a final machine learning model trained using the representative dataset.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024070522A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | SELECTING A HIGH COVERAGE DATASET |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=APPUGLIESE,%20CARLO&rft.date=2024-02-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024070522A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |