SELECTING A HIGH COVERAGE DATASET
Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of da...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Providing a representative dataset from an initial dataset by accessing a dataset associated with a machine learning model, receiving input parameters associated with the representative dataset selection, the input parameters including an evaluation metric, determining a density of a plurality of datapoints associated with the dataset, training a first iteration of a machine learning model using a first data point selected according to the density, determining a first value of the evaluation metric for the first iteration of the machine learning model, generating a representative subset based on the first value of the evaluation metric value, and providing the representative dataset and a final machine learning model trained using the representative dataset. |
---|