PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using self-attention based neural networks. One of the methods includes obtaining one or more images comprising a plurality of pixels; determining, for each image of the one or more...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Dosovitskiy, Alexey Heigold, Georg Beyer, Lucas Klaus Weissenborn, Dirk Zhai, Xiaohua Gelly, Sylvain Kolesnikov, Alexander Dehghani, Mostafa Houlsby, Neil Matthew Tinmouth Minderer, Matthias Johannes Lorenz Unterthiner, Thomas Uszkoreit, Jakob D |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using self-attention based neural networks. One of the methods includes obtaining one or more images comprising a plurality of pixels; determining, for each image of the one or more images, a plurality of image patches of the image, wherein each image patch comprises a different subset of the pixels of the image; processing, for each image of the one or more images, the corresponding plurality of image patches to generate an input sequence comprising a respective input element at each of a plurality of input positions, wherein a plurality of the input elements correspond to respective different image patches; and processing the input sequences using a neural network to generate a network output that characterizes the one or more images, wherein the neural network comprises one or more self-attention neural network layers. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024062426A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024062426A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024062426A13</originalsourceid><addsrcrecordid>eNrjZLAJCPJ3dg0O9vRzV_D0dXR3DVYIBXOCXX3cdB1DQlz9Qjz9_RScHINdXRT8XEODHH2AVEi4f5B3MA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjEwMzIxMnM0NCZOFQDJMSq4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS</title><source>esp@cenet</source><creator>Dosovitskiy, Alexey ; Heigold, Georg ; Beyer, Lucas Klaus ; Weissenborn, Dirk ; Zhai, Xiaohua ; Gelly, Sylvain ; Kolesnikov, Alexander ; Dehghani, Mostafa ; Houlsby, Neil Matthew Tinmouth ; Minderer, Matthias Johannes Lorenz ; Unterthiner, Thomas ; Uszkoreit, Jakob D</creator><creatorcontrib>Dosovitskiy, Alexey ; Heigold, Georg ; Beyer, Lucas Klaus ; Weissenborn, Dirk ; Zhai, Xiaohua ; Gelly, Sylvain ; Kolesnikov, Alexander ; Dehghani, Mostafa ; Houlsby, Neil Matthew Tinmouth ; Minderer, Matthias Johannes Lorenz ; Unterthiner, Thomas ; Uszkoreit, Jakob D</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using self-attention based neural networks. One of the methods includes obtaining one or more images comprising a plurality of pixels; determining, for each image of the one or more images, a plurality of image patches of the image, wherein each image patch comprises a different subset of the pixels of the image; processing, for each image of the one or more images, the corresponding plurality of image patches to generate an input sequence comprising a respective input element at each of a plurality of input positions, wherein a plurality of the input elements correspond to respective different image patches; and processing the input sequences using a neural network to generate a network output that characterizes the one or more images, wherein the neural network comprises one or more self-attention neural network layers.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240222&DB=EPODOC&CC=US&NR=2024062426A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240222&DB=EPODOC&CC=US&NR=2024062426A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Dosovitskiy, Alexey</creatorcontrib><creatorcontrib>Heigold, Georg</creatorcontrib><creatorcontrib>Beyer, Lucas Klaus</creatorcontrib><creatorcontrib>Weissenborn, Dirk</creatorcontrib><creatorcontrib>Zhai, Xiaohua</creatorcontrib><creatorcontrib>Gelly, Sylvain</creatorcontrib><creatorcontrib>Kolesnikov, Alexander</creatorcontrib><creatorcontrib>Dehghani, Mostafa</creatorcontrib><creatorcontrib>Houlsby, Neil Matthew Tinmouth</creatorcontrib><creatorcontrib>Minderer, Matthias Johannes Lorenz</creatorcontrib><creatorcontrib>Unterthiner, Thomas</creatorcontrib><creatorcontrib>Uszkoreit, Jakob D</creatorcontrib><title>PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using self-attention based neural networks. One of the methods includes obtaining one or more images comprising a plurality of pixels; determining, for each image of the one or more images, a plurality of image patches of the image, wherein each image patch comprises a different subset of the pixels of the image; processing, for each image of the one or more images, the corresponding plurality of image patches to generate an input sequence comprising a respective input element at each of a plurality of input positions, wherein a plurality of the input elements correspond to respective different image patches; and processing the input sequences using a neural network to generate a network output that characterizes the one or more images, wherein the neural network comprises one or more self-attention neural network layers.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAJCPJ3dg0O9vRzV_D0dXR3DVYIBXOCXX3cdB1DQlz9Qjz9_RScHINdXRT8XEODHH2AVEi4f5B3MA8Da1piTnEqL5TmZlB2cw1x9tBNLciPTy0uSExOzUstiQ8NNjIwMjEwMzIxMnM0NCZOFQDJMSq4</recordid><startdate>20240222</startdate><enddate>20240222</enddate><creator>Dosovitskiy, Alexey</creator><creator>Heigold, Georg</creator><creator>Beyer, Lucas Klaus</creator><creator>Weissenborn, Dirk</creator><creator>Zhai, Xiaohua</creator><creator>Gelly, Sylvain</creator><creator>Kolesnikov, Alexander</creator><creator>Dehghani, Mostafa</creator><creator>Houlsby, Neil Matthew Tinmouth</creator><creator>Minderer, Matthias Johannes Lorenz</creator><creator>Unterthiner, Thomas</creator><creator>Uszkoreit, Jakob D</creator><scope>EVB</scope></search><sort><creationdate>20240222</creationdate><title>PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS</title><author>Dosovitskiy, Alexey ; Heigold, Georg ; Beyer, Lucas Klaus ; Weissenborn, Dirk ; Zhai, Xiaohua ; Gelly, Sylvain ; Kolesnikov, Alexander ; Dehghani, Mostafa ; Houlsby, Neil Matthew Tinmouth ; Minderer, Matthias Johannes Lorenz ; Unterthiner, Thomas ; Uszkoreit, Jakob D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024062426A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Dosovitskiy, Alexey</creatorcontrib><creatorcontrib>Heigold, Georg</creatorcontrib><creatorcontrib>Beyer, Lucas Klaus</creatorcontrib><creatorcontrib>Weissenborn, Dirk</creatorcontrib><creatorcontrib>Zhai, Xiaohua</creatorcontrib><creatorcontrib>Gelly, Sylvain</creatorcontrib><creatorcontrib>Kolesnikov, Alexander</creatorcontrib><creatorcontrib>Dehghani, Mostafa</creatorcontrib><creatorcontrib>Houlsby, Neil Matthew Tinmouth</creatorcontrib><creatorcontrib>Minderer, Matthias Johannes Lorenz</creatorcontrib><creatorcontrib>Unterthiner, Thomas</creatorcontrib><creatorcontrib>Uszkoreit, Jakob D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dosovitskiy, Alexey</au><au>Heigold, Georg</au><au>Beyer, Lucas Klaus</au><au>Weissenborn, Dirk</au><au>Zhai, Xiaohua</au><au>Gelly, Sylvain</au><au>Kolesnikov, Alexander</au><au>Dehghani, Mostafa</au><au>Houlsby, Neil Matthew Tinmouth</au><au>Minderer, Matthias Johannes Lorenz</au><au>Unterthiner, Thomas</au><au>Uszkoreit, Jakob D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS</title><date>2024-02-22</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using self-attention based neural networks. One of the methods includes obtaining one or more images comprising a plurality of pixels; determining, for each image of the one or more images, a plurality of image patches of the image, wherein each image patch comprises a different subset of the pixels of the image; processing, for each image of the one or more images, the corresponding plurality of image patches to generate an input sequence comprising a respective input element at each of a plurality of input positions, wherein a plurality of the input elements correspond to respective different image patches; and processing the input sequences using a neural network to generate a network output that characterizes the one or more images, wherein the neural network comprises one or more self-attention neural network layers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024062426A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | PROCESSING IMAGES USING SELF-ATTENTION BASED NEURAL NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A38%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Dosovitskiy,%20Alexey&rft.date=2024-02-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024062426A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |