SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS
The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also prov...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SASABUCHI, Kazuhiro de MOURA CAMPOS, Marcos SHNAYDER, Victor NEEMA, Kartavya CHUNG, Brice Hoani Valentin TAKAMATSU, Jun IKEUCHI, Katsushi KONG, Ruofan AKSOYLAR, Aydan WAKE, Naoki |
description | The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024051128A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024051128A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024051128A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0ESFrqFJmmCTK73L4FSKxEm0UN8fB30Apx8-_rXo6RK6DhqMPVLggAl0MvBVHnRIIbUQLXs04HAA9haMpdAmQAc6MyaMmAnoSmwjbcXqPj2Wsvt1I_bOcuMPZX6NZZmnW3mW95hJVepUnaVUtZbH_64PRpcwKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><source>esp@cenet</source><creator>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</creator><creatorcontrib>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</creatorcontrib><description>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</description><language>eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240215&DB=EPODOC&CC=US&NR=2024051128A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240215&DB=EPODOC&CC=US&NR=2024051128A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SASABUCHI, Kazuhiro</creatorcontrib><creatorcontrib>de MOURA CAMPOS, Marcos</creatorcontrib><creatorcontrib>SHNAYDER, Victor</creatorcontrib><creatorcontrib>NEEMA, Kartavya</creatorcontrib><creatorcontrib>CHUNG, Brice Hoani Valentin</creatorcontrib><creatorcontrib>TAKAMATSU, Jun</creatorcontrib><creatorcontrib>IKEUCHI, Katsushi</creatorcontrib><creatorcontrib>KONG, Ruofan</creatorcontrib><creatorcontrib>AKSOYLAR, Aydan</creatorcontrib><creatorcontrib>WAKE, Naoki</creatorcontrib><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><description>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0ESFrqFJmmCTK73L4FSKxEm0UN8fB30Apx8-_rXo6RK6DhqMPVLggAl0MvBVHnRIIbUQLXs04HAA9haMpdAmQAc6MyaMmAnoSmwjbcXqPj2Wsvt1I_bOcuMPZX6NZZmnW3mW95hJVepUnaVUtZbH_64PRpcwKA</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>SASABUCHI, Kazuhiro</creator><creator>de MOURA CAMPOS, Marcos</creator><creator>SHNAYDER, Victor</creator><creator>NEEMA, Kartavya</creator><creator>CHUNG, Brice Hoani Valentin</creator><creator>TAKAMATSU, Jun</creator><creator>IKEUCHI, Katsushi</creator><creator>KONG, Ruofan</creator><creator>AKSOYLAR, Aydan</creator><creator>WAKE, Naoki</creator><scope>EVB</scope></search><sort><creationdate>20240215</creationdate><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><author>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024051128A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>SASABUCHI, Kazuhiro</creatorcontrib><creatorcontrib>de MOURA CAMPOS, Marcos</creatorcontrib><creatorcontrib>SHNAYDER, Victor</creatorcontrib><creatorcontrib>NEEMA, Kartavya</creatorcontrib><creatorcontrib>CHUNG, Brice Hoani Valentin</creatorcontrib><creatorcontrib>TAKAMATSU, Jun</creatorcontrib><creatorcontrib>IKEUCHI, Katsushi</creatorcontrib><creatorcontrib>KONG, Ruofan</creatorcontrib><creatorcontrib>AKSOYLAR, Aydan</creatorcontrib><creatorcontrib>WAKE, Naoki</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SASABUCHI, Kazuhiro</au><au>de MOURA CAMPOS, Marcos</au><au>SHNAYDER, Victor</au><au>NEEMA, Kartavya</au><au>CHUNG, Brice Hoani Valentin</au><au>TAKAMATSU, Jun</au><au>IKEUCHI, Katsushi</au><au>KONG, Ruofan</au><au>AKSOYLAR, Aydan</au><au>WAKE, Naoki</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><date>2024-02-15</date><risdate>2024</risdate><abstract>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024051128A1 |
source | esp@cenet |
subjects | CHAMBERS PROVIDED WITH MANIPULATION DEVICES HAND TOOLS MANIPULATORS PERFORMING OPERATIONS PORTABLE POWER-DRIVEN TOOLS TRANSPORTING |
title | SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SASABUCHI,%20Kazuhiro&rft.date=2024-02-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024051128A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |