SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS

The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SASABUCHI, Kazuhiro, de MOURA CAMPOS, Marcos, SHNAYDER, Victor, NEEMA, Kartavya, CHUNG, Brice Hoani Valentin, TAKAMATSU, Jun, IKEUCHI, Katsushi, KONG, Ruofan, AKSOYLAR, Aydan, WAKE, Naoki
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SASABUCHI, Kazuhiro
de MOURA CAMPOS, Marcos
SHNAYDER, Victor
NEEMA, Kartavya
CHUNG, Brice Hoani Valentin
TAKAMATSU, Jun
IKEUCHI, Katsushi
KONG, Ruofan
AKSOYLAR, Aydan
WAKE, Naoki
description The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024051128A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024051128A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024051128A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0ESFrqFJmmCTK73L4FSKxEm0UN8fB30Apx8-_rXo6RK6DhqMPVLggAl0MvBVHnRIIbUQLXs04HAA9haMpdAmQAc6MyaMmAnoSmwjbcXqPj2Wsvt1I_bOcuMPZX6NZZmnW3mW95hJVepUnaVUtZbH_64PRpcwKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><source>esp@cenet</source><creator>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</creator><creatorcontrib>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</creatorcontrib><description>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</description><language>eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240215&amp;DB=EPODOC&amp;CC=US&amp;NR=2024051128A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240215&amp;DB=EPODOC&amp;CC=US&amp;NR=2024051128A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SASABUCHI, Kazuhiro</creatorcontrib><creatorcontrib>de MOURA CAMPOS, Marcos</creatorcontrib><creatorcontrib>SHNAYDER, Victor</creatorcontrib><creatorcontrib>NEEMA, Kartavya</creatorcontrib><creatorcontrib>CHUNG, Brice Hoani Valentin</creatorcontrib><creatorcontrib>TAKAMATSU, Jun</creatorcontrib><creatorcontrib>IKEUCHI, Katsushi</creatorcontrib><creatorcontrib>KONG, Ruofan</creatorcontrib><creatorcontrib>AKSOYLAR, Aydan</creatorcontrib><creatorcontrib>WAKE, Naoki</creatorcontrib><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><description>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0ESFrqFJmmCTK73L4FSKxEm0UN8fB30Apx8-_rXo6RK6DhqMPVLggAl0MvBVHnRIIbUQLXs04HAA9haMpdAmQAc6MyaMmAnoSmwjbcXqPj2Wsvt1I_bOcuMPZX6NZZmnW3mW95hJVepUnaVUtZbH_64PRpcwKA</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>SASABUCHI, Kazuhiro</creator><creator>de MOURA CAMPOS, Marcos</creator><creator>SHNAYDER, Victor</creator><creator>NEEMA, Kartavya</creator><creator>CHUNG, Brice Hoani Valentin</creator><creator>TAKAMATSU, Jun</creator><creator>IKEUCHI, Katsushi</creator><creator>KONG, Ruofan</creator><creator>AKSOYLAR, Aydan</creator><creator>WAKE, Naoki</creator><scope>EVB</scope></search><sort><creationdate>20240215</creationdate><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><author>SASABUCHI, Kazuhiro ; de MOURA CAMPOS, Marcos ; SHNAYDER, Victor ; NEEMA, Kartavya ; CHUNG, Brice Hoani Valentin ; TAKAMATSU, Jun ; IKEUCHI, Katsushi ; KONG, Ruofan ; AKSOYLAR, Aydan ; WAKE, Naoki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024051128A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>SASABUCHI, Kazuhiro</creatorcontrib><creatorcontrib>de MOURA CAMPOS, Marcos</creatorcontrib><creatorcontrib>SHNAYDER, Victor</creatorcontrib><creatorcontrib>NEEMA, Kartavya</creatorcontrib><creatorcontrib>CHUNG, Brice Hoani Valentin</creatorcontrib><creatorcontrib>TAKAMATSU, Jun</creatorcontrib><creatorcontrib>IKEUCHI, Katsushi</creatorcontrib><creatorcontrib>KONG, Ruofan</creatorcontrib><creatorcontrib>AKSOYLAR, Aydan</creatorcontrib><creatorcontrib>WAKE, Naoki</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SASABUCHI, Kazuhiro</au><au>de MOURA CAMPOS, Marcos</au><au>SHNAYDER, Victor</au><au>NEEMA, Kartavya</au><au>CHUNG, Brice Hoani Valentin</au><au>TAKAMATSU, Jun</au><au>IKEUCHI, Katsushi</au><au>KONG, Ruofan</au><au>AKSOYLAR, Aydan</au><au>WAKE, Naoki</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS</title><date>2024-02-15</date><risdate>2024</risdate><abstract>The techniques disclosed herein enable a machine learning model to learn a termination condition of a sub-task. A sub-task is one of a number of sub-tasks that, when performed in sequence, accomplish a long-running task. A machine learning model used to perform the sub-task is augmented to also provide a termination signal. The termination signal indicates whether the sub-task's termination condition has been met. Monitoring the termination signal while performing the sub-task enables subsequent sub-tasks to seamlessly begin at the appropriate time. A termination condition may be learned from the same data used to train other model outputs. In some configurations, the model learns whether a sub-task is complete by periodically attempting subsequent sub-tasks. If a subsequent sub-task can be performed, positive reinforcement is provided for the termination condition. The termination condition may also be trained using synthetic scenarios designed to test when the termination condition has been met.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024051128A1
source esp@cenet
subjects CHAMBERS PROVIDED WITH MANIPULATION DEVICES
HAND TOOLS
MANIPULATORS
PERFORMING OPERATIONS
PORTABLE POWER-DRIVEN TOOLS
TRANSPORTING
title SKILL COMPOSITION AND SKILL TRAINING METHOD FOR THE DESIGN OF AUTONOMOUS SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SASABUCHI,%20Kazuhiro&rft.date=2024-02-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024051128A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true