MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using multi-task neural networks. One of the methods includes receiving a first network input and data identifying a first machine learning task to be performed on the first network input; selecting a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ha, David, Rusu, Andrei-Alexandru, Pritzel, Alexander, Banarse, Dylan Sunil, Zwols, Yori, Blundell, Charles, Wierstra, Daniel Pieter, Fernando, Chrisantha Thomas
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ha, David
Rusu, Andrei-Alexandru
Pritzel, Alexander
Banarse, Dylan Sunil
Zwols, Yori
Blundell, Charles
Wierstra, Daniel Pieter
Fernando, Chrisantha Thomas
description Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using multi-task neural networks. One of the methods includes receiving a first network input and data identifying a first machine learning task to be performed on the first network input; selecting a path through the plurality of layers in a super neural network that is specific to the first machine learning task, the path specifying, for each of the layers, a proper subset of the modular neural networks in the layer that are designated as active when performing the first machine learning task; and causing the super neural network to process the first network input using (i) for each layer, the modular neural networks in the layer that are designated as active by the selected path and (ii) the set of one or more output layers corresponding to the identified first machine learning task.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024046106A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024046106A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024046106A13</originalsourceid><addsrcrecordid>eNrjZDD2DfUJ8dQNcQz2VvBzDQ1y9AFSIeH-Qd7BCuGeIR4KIBnd4ABXZ083T2eFAMcQj2AeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRiYGJmaGDmaGhMnCoAVqcoMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS</title><source>esp@cenet</source><creator>Ha, David ; Rusu, Andrei-Alexandru ; Pritzel, Alexander ; Banarse, Dylan Sunil ; Zwols, Yori ; Blundell, Charles ; Wierstra, Daniel Pieter ; Fernando, Chrisantha Thomas</creator><creatorcontrib>Ha, David ; Rusu, Andrei-Alexandru ; Pritzel, Alexander ; Banarse, Dylan Sunil ; Zwols, Yori ; Blundell, Charles ; Wierstra, Daniel Pieter ; Fernando, Chrisantha Thomas</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using multi-task neural networks. One of the methods includes receiving a first network input and data identifying a first machine learning task to be performed on the first network input; selecting a path through the plurality of layers in a super neural network that is specific to the first machine learning task, the path specifying, for each of the layers, a proper subset of the modular neural networks in the layer that are designated as active when performing the first machine learning task; and causing the super neural network to process the first network input using (i) for each layer, the modular neural networks in the layer that are designated as active by the selected path and (ii) the set of one or more output layers corresponding to the identified first machine learning task.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240208&amp;DB=EPODOC&amp;CC=US&amp;NR=2024046106A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240208&amp;DB=EPODOC&amp;CC=US&amp;NR=2024046106A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ha, David</creatorcontrib><creatorcontrib>Rusu, Andrei-Alexandru</creatorcontrib><creatorcontrib>Pritzel, Alexander</creatorcontrib><creatorcontrib>Banarse, Dylan Sunil</creatorcontrib><creatorcontrib>Zwols, Yori</creatorcontrib><creatorcontrib>Blundell, Charles</creatorcontrib><creatorcontrib>Wierstra, Daniel Pieter</creatorcontrib><creatorcontrib>Fernando, Chrisantha Thomas</creatorcontrib><title>MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using multi-task neural networks. One of the methods includes receiving a first network input and data identifying a first machine learning task to be performed on the first network input; selecting a path through the plurality of layers in a super neural network that is specific to the first machine learning task, the path specifying, for each of the layers, a proper subset of the modular neural networks in the layer that are designated as active when performing the first machine learning task; and causing the super neural network to process the first network input using (i) for each layer, the modular neural networks in the layer that are designated as active by the selected path and (ii) the set of one or more output layers corresponding to the identified first machine learning task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD2DfUJ8dQNcQz2VvBzDQ1y9AFSIeH-Qd7BCuGeIR4KIBnd4ABXZ083T2eFAMcQj2AeBta0xJziVF4ozc2g7OYa4uyhm1qQH59aXJCYnJqXWhIfGmxkYGRiYGJmaGDmaGhMnCoAVqcoMQ</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Ha, David</creator><creator>Rusu, Andrei-Alexandru</creator><creator>Pritzel, Alexander</creator><creator>Banarse, Dylan Sunil</creator><creator>Zwols, Yori</creator><creator>Blundell, Charles</creator><creator>Wierstra, Daniel Pieter</creator><creator>Fernando, Chrisantha Thomas</creator><scope>EVB</scope></search><sort><creationdate>20240208</creationdate><title>MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS</title><author>Ha, David ; Rusu, Andrei-Alexandru ; Pritzel, Alexander ; Banarse, Dylan Sunil ; Zwols, Yori ; Blundell, Charles ; Wierstra, Daniel Pieter ; Fernando, Chrisantha Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024046106A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Ha, David</creatorcontrib><creatorcontrib>Rusu, Andrei-Alexandru</creatorcontrib><creatorcontrib>Pritzel, Alexander</creatorcontrib><creatorcontrib>Banarse, Dylan Sunil</creatorcontrib><creatorcontrib>Zwols, Yori</creatorcontrib><creatorcontrib>Blundell, Charles</creatorcontrib><creatorcontrib>Wierstra, Daniel Pieter</creatorcontrib><creatorcontrib>Fernando, Chrisantha Thomas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ha, David</au><au>Rusu, Andrei-Alexandru</au><au>Pritzel, Alexander</au><au>Banarse, Dylan Sunil</au><au>Zwols, Yori</au><au>Blundell, Charles</au><au>Wierstra, Daniel Pieter</au><au>Fernando, Chrisantha Thomas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS</title><date>2024-02-08</date><risdate>2024</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using multi-task neural networks. One of the methods includes receiving a first network input and data identifying a first machine learning task to be performed on the first network input; selecting a path through the plurality of layers in a super neural network that is specific to the first machine learning task, the path specifying, for each of the layers, a proper subset of the modular neural networks in the layer that are designated as active when performing the first machine learning task; and causing the super neural network to process the first network input using (i) for each layer, the modular neural networks in the layer that are designated as active by the selected path and (ii) the set of one or more output layers corresponding to the identified first machine learning task.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024046106A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MULTI-TASK NEURAL NETWORKS WITH TASK-SPECIFIC PATHS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ha,%20David&rft.date=2024-02-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024046106A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true