CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING

A cardinality estimation method for Skyline query based on deep learning comprises: parsing historical query log information of a database to obtain Skyline query on a given target dataset and its corresponding cardinality to construct a training set; constructing and training respective data distri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Miao, Xiaoye, Yin, Jianwei, Peng, Jiazhen, Wu, Yangyang
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Miao, Xiaoye
Yin, Jianwei
Peng, Jiazhen
Wu, Yangyang
description A cardinality estimation method for Skyline query based on deep learning comprises: parsing historical query log information of a database to obtain Skyline query on a given target dataset and its corresponding cardinality to construct a training set; constructing and training respective data distribution learning models according to distribution information of the target dataset and the training set; using model parameters of the trained data distribution learning models as initialization parameter of the cardinality estimation model, and training the cardinality estimation model according to the training set; inputting query points to obtain final cardinality estimates according to the trained cardinality estimation model. The present disclosure provides a solution for cardinality estimation for Skyline query variants, and ensures the monotonic nature of cardinality estimation for Skyline query variants, and proposes an efficient and accurate cardinality estimation method.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024045871A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024045871A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024045871A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-w4Gz0NaKrmdytYdpYpNUyFSKxEm0UP8fHfwAp7e8uWglOsUGNYcI5AM3GNgaaCjUVgEaBYquLAkq68Cfo2ZD0HbkIhzRk4JvVkQX0ITOsDktxew-PKa0-rkQ64qCrDdpfPVpGodbeqZ33_kiK8qs3B32Oebb_9YHSw4wCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING</title><source>esp@cenet</source><creator>Miao, Xiaoye ; Yin, Jianwei ; Peng, Jiazhen ; Wu, Yangyang</creator><creatorcontrib>Miao, Xiaoye ; Yin, Jianwei ; Peng, Jiazhen ; Wu, Yangyang</creatorcontrib><description>A cardinality estimation method for Skyline query based on deep learning comprises: parsing historical query log information of a database to obtain Skyline query on a given target dataset and its corresponding cardinality to construct a training set; constructing and training respective data distribution learning models according to distribution information of the target dataset and the training set; using model parameters of the trained data distribution learning models as initialization parameter of the cardinality estimation model, and training the cardinality estimation model according to the training set; inputting query points to obtain final cardinality estimates according to the trained cardinality estimation model. The present disclosure provides a solution for cardinality estimation for Skyline query variants, and ensures the monotonic nature of cardinality estimation for Skyline query variants, and proposes an efficient and accurate cardinality estimation method.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240208&amp;DB=EPODOC&amp;CC=US&amp;NR=2024045871A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240208&amp;DB=EPODOC&amp;CC=US&amp;NR=2024045871A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Miao, Xiaoye</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Peng, Jiazhen</creatorcontrib><creatorcontrib>Wu, Yangyang</creatorcontrib><title>CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING</title><description>A cardinality estimation method for Skyline query based on deep learning comprises: parsing historical query log information of a database to obtain Skyline query on a given target dataset and its corresponding cardinality to construct a training set; constructing and training respective data distribution learning models according to distribution information of the target dataset and the training set; using model parameters of the trained data distribution learning models as initialization parameter of the cardinality estimation model, and training the cardinality estimation model according to the training set; inputting query points to obtain final cardinality estimates according to the trained cardinality estimation model. The present disclosure provides a solution for cardinality estimation for Skyline query variants, and ensures the monotonic nature of cardinality estimation for Skyline query variants, and proposes an efficient and accurate cardinality estimation method.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-w4Gz0NaKrmdytYdpYpNUyFSKxEm0UP8fHfwAp7e8uWglOsUGNYcI5AM3GNgaaCjUVgEaBYquLAkq68Cfo2ZD0HbkIhzRk4JvVkQX0ITOsDktxew-PKa0-rkQ64qCrDdpfPVpGodbeqZ33_kiK8qs3B32Oebb_9YHSw4wCQ</recordid><startdate>20240208</startdate><enddate>20240208</enddate><creator>Miao, Xiaoye</creator><creator>Yin, Jianwei</creator><creator>Peng, Jiazhen</creator><creator>Wu, Yangyang</creator><scope>EVB</scope></search><sort><creationdate>20240208</creationdate><title>CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING</title><author>Miao, Xiaoye ; Yin, Jianwei ; Peng, Jiazhen ; Wu, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024045871A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Miao, Xiaoye</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><creatorcontrib>Peng, Jiazhen</creatorcontrib><creatorcontrib>Wu, Yangyang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miao, Xiaoye</au><au>Yin, Jianwei</au><au>Peng, Jiazhen</au><au>Wu, Yangyang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING</title><date>2024-02-08</date><risdate>2024</risdate><abstract>A cardinality estimation method for Skyline query based on deep learning comprises: parsing historical query log information of a database to obtain Skyline query on a given target dataset and its corresponding cardinality to construct a training set; constructing and training respective data distribution learning models according to distribution information of the target dataset and the training set; using model parameters of the trained data distribution learning models as initialization parameter of the cardinality estimation model, and training the cardinality estimation model according to the training set; inputting query points to obtain final cardinality estimates according to the trained cardinality estimation model. The present disclosure provides a solution for cardinality estimation for Skyline query variants, and ensures the monotonic nature of cardinality estimation for Skyline query variants, and proposes an efficient and accurate cardinality estimation method.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024045871A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title CARDINALITY ESTIMATION METHOD AND DEVICE FOR SKYLINE QUERY BASED ON DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A30%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Miao,%20Xiaoye&rft.date=2024-02-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024045871A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true