SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT
Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Czeszynski, Alan Donald Chalk, Mary Elizabeth Rogers, Robert Derward |
description | Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024037299A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024037299A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024037299A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4FzoaaCdAzNtQk0F7lcC7qUInESLdT3RwcfwOmHj3-dcbxEQR9BkwGPYoOJ0AQG3bWBnVgPZ-QveE01gg8GO0ctOAINV-SQC_dRAGlwHMgjyTZb3afHkna_brJ9g1LbPM2vMS3zdEvP9B77qAp1LMqTqip9KP-7PrVzMOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><source>esp@cenet</source><creator>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</creator><creatorcontrib>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</creatorcontrib><description>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240201&DB=EPODOC&CC=US&NR=2024037299A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20240201&DB=EPODOC&CC=US&NR=2024037299A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Czeszynski, Alan Donald</creatorcontrib><creatorcontrib>Chalk, Mary Elizabeth</creatorcontrib><creatorcontrib>Rogers, Robert Derward</creatorcontrib><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><description>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4FzoaaCdAzNtQk0F7lcC7qUInESLdT3RwcfwOmHj3-dcbxEQR9BkwGPYoOJ0AQG3bWBnVgPZ-QveE01gg8GO0ctOAINV-SQC_dRAGlwHMgjyTZb3afHkna_brJ9g1LbPM2vMS3zdEvP9B77qAp1LMqTqip9KP-7PrVzMOM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Czeszynski, Alan Donald</creator><creator>Chalk, Mary Elizabeth</creator><creator>Rogers, Robert Derward</creator><scope>EVB</scope></search><sort><creationdate>20240201</creationdate><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><author>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024037299A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Czeszynski, Alan Donald</creatorcontrib><creatorcontrib>Chalk, Mary Elizabeth</creatorcontrib><creatorcontrib>Rogers, Robert Derward</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Czeszynski, Alan Donald</au><au>Chalk, Mary Elizabeth</au><au>Rogers, Robert Derward</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><date>2024-02-01</date><risdate>2024</risdate><abstract>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2024037299A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Czeszynski,%20Alan%20Donald&rft.date=2024-02-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024037299A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |