SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT

Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Czeszynski, Alan Donald, Chalk, Mary Elizabeth, Rogers, Robert Derward
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Czeszynski, Alan Donald
Chalk, Mary Elizabeth
Rogers, Robert Derward
description Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024037299A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024037299A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024037299A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4FzoaaCdAzNtQk0F7lcC7qUInESLdT3RwcfwOmHj3-dcbxEQR9BkwGPYoOJ0AQG3bWBnVgPZ-QveE01gg8GO0ctOAINV-SQC_dRAGlwHMgjyTZb3afHkna_brJ9g1LbPM2vMS3zdEvP9B77qAp1LMqTqip9KP-7PrVzMOM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><source>esp@cenet</source><creator>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</creator><creatorcontrib>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</creatorcontrib><description>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240201&amp;DB=EPODOC&amp;CC=US&amp;NR=2024037299A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240201&amp;DB=EPODOC&amp;CC=US&amp;NR=2024037299A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Czeszynski, Alan Donald</creatorcontrib><creatorcontrib>Chalk, Mary Elizabeth</creatorcontrib><creatorcontrib>Rogers, Robert Derward</creatorcontrib><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><description>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4FzoaaCdAzNtQk0F7lcC7qUInESLdT3RwcfwOmHj3-dcbxEQR9BkwGPYoOJ0AQG3bWBnVgPZ-QveE01gg8GO0ctOAINV-SQC_dRAGlwHMgjyTZb3afHkna_brJ9g1LbPM2vMS3zdEvP9B77qAp1LMqTqip9KP-7PrVzMOM</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Czeszynski, Alan Donald</creator><creator>Chalk, Mary Elizabeth</creator><creator>Rogers, Robert Derward</creator><scope>EVB</scope></search><sort><creationdate>20240201</creationdate><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><author>Czeszynski, Alan Donald ; Chalk, Mary Elizabeth ; Rogers, Robert Derward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024037299A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Czeszynski, Alan Donald</creatorcontrib><creatorcontrib>Chalk, Mary Elizabeth</creatorcontrib><creatorcontrib>Rogers, Robert Derward</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Czeszynski, Alan Donald</au><au>Chalk, Mary Elizabeth</au><au>Rogers, Robert Derward</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT</title><date>2024-02-01</date><risdate>2024</risdate><abstract>Systems and methods for providing algorithm performance feedback to an algorithm developer is provided In some embodiments, an algorithm and a data set are receiving within a secure computing node. The data set is processed using the algorithm to generate an algorithm output. A raw performance model is generated by regression modeling the algorithm output. The raw performance model is then smoothed to generate a final performance model, which is then encrypted and routed to an algorithm developer for further analysis. The performance model models at least one of the algorithm's accuracy, F1 score accuracy, precision, recall, dice score, ROC (receiver operator characteristic) curve/area, log loss, Jaccard index, error, R2 or by some combination thereof. The regression modeling includes linear least squares, logistic regression, deep learning or some combination thereof.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024037299A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEMS AND METHODS FOR ALGORITHM PERFORMANCE MODELING IN A ZERO-TRUST ENVIRONMENT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Czeszynski,%20Alan%20Donald&rft.date=2024-02-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024037299A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true