WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS

The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Narasimha Swamy, Vasuki, Nikopour, Hosein, Orhan, Oner
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Narasimha Swamy, Vasuki
Nikopour, Hosein
Orhan, Oner
description The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control parameters, such that the wireless network realizes or achieves NES as a whole. The wireless network is represented as a graph with heterogeneous vertices that represent corresponding network nodes and edges that represent connections between the network nodes. The NES ML model comprises a graph neural network (GNN) and a fully connected neural network (FCNN). The GNN may be a graph convolutional neural network or a graph attention network. The FCNN may be a multi-layer perceptron, a deep neural network, and/or some other type of neural network. Other embodiments may be described and/or claimed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2024023028A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2024023028A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2024023028A13</originalsourceid><addsrcrecordid>eNrjZLAM9wxy9XENDlbwcw0J9w_yVnD1cw1yj1QIdgzz9HNXCPcM8VBwD3IM8AAqCA1y9IGpC-ZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRiYGRsYGRhaOhsbEqQIAXOop_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS</title><source>esp@cenet</source><creator>Narasimha Swamy, Vasuki ; Nikopour, Hosein ; Orhan, Oner</creator><creatorcontrib>Narasimha Swamy, Vasuki ; Nikopour, Hosein ; Orhan, Oner</creatorcontrib><description>The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control parameters, such that the wireless network realizes or achieves NES as a whole. The wireless network is represented as a graph with heterogeneous vertices that represent corresponding network nodes and edges that represent connections between the network nodes. The NES ML model comprises a graph neural network (GNN) and a fully connected neural network (FCNN). The GNN may be a graph convolutional neural network or a graph attention network. The FCNN may be a multi-layer perceptron, a deep neural network, and/or some other type of neural network. Other embodiments may be described and/or claimed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; PHYSICS ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240118&amp;DB=EPODOC&amp;CC=US&amp;NR=2024023028A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240118&amp;DB=EPODOC&amp;CC=US&amp;NR=2024023028A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Narasimha Swamy, Vasuki</creatorcontrib><creatorcontrib>Nikopour, Hosein</creatorcontrib><creatorcontrib>Orhan, Oner</creatorcontrib><title>WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS</title><description>The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control parameters, such that the wireless network realizes or achieves NES as a whole. The wireless network is represented as a graph with heterogeneous vertices that represent corresponding network nodes and edges that represent connections between the network nodes. The NES ML model comprises a graph neural network (GNN) and a fully connected neural network (FCNN). The GNN may be a graph convolutional neural network or a graph attention network. The FCNN may be a multi-layer perceptron, a deep neural network, and/or some other type of neural network. Other embodiments may be described and/or claimed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAM9wxy9XENDlbwcw0J9w_yVnD1cw1yj1QIdgzz9HNXCPcM8VBwD3IM8AAqCA1y9IGpC-ZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRiYGRsYGRhaOhsbEqQIAXOop_g</recordid><startdate>20240118</startdate><enddate>20240118</enddate><creator>Narasimha Swamy, Vasuki</creator><creator>Nikopour, Hosein</creator><creator>Orhan, Oner</creator><scope>EVB</scope></search><sort><creationdate>20240118</creationdate><title>WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS</title><author>Narasimha Swamy, Vasuki ; Nikopour, Hosein ; Orhan, Oner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2024023028A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>Narasimha Swamy, Vasuki</creatorcontrib><creatorcontrib>Nikopour, Hosein</creatorcontrib><creatorcontrib>Orhan, Oner</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Narasimha Swamy, Vasuki</au><au>Nikopour, Hosein</au><au>Orhan, Oner</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS</title><date>2024-01-18</date><risdate>2024</risdate><abstract>The present disclosure discusses network energy savings (NES) machine learning (ML) models that predict NES parameters used to adjust control parameters of respective network nodes in a wireless network, wherein the NES parameters can be used by the respective network nodes to adjust their control parameters, such that the wireless network realizes or achieves NES as a whole. The wireless network is represented as a graph with heterogeneous vertices that represent corresponding network nodes and edges that represent connections between the network nodes. The NES ML model comprises a graph neural network (GNN) and a fully connected neural network (FCNN). The GNN may be a graph convolutional neural network or a graph attention network. The FCNN may be a multi-layer perceptron, a deep neural network, and/or some other type of neural network. Other embodiments may be described and/or claimed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2024023028A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
PHYSICS
WIRELESS COMMUNICATIONS NETWORKS
title WIRELESS NETWORK ENERGY SAVING WITH GRAPH NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Narasimha%20Swamy,%20Vasuki&rft.date=2024-01-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2024023028A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true