METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK
A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or k...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zwicklbauer, Stefan Ahmed, Sheraz Chattha, Muhammad Ali van Elst, Ludger |
description | A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023394284A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023394284A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023394284A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4GzoG0HHc_maqNtUi5XxUFKkTiJFur7YxUfwOkf_m-sLiVJ7jSg1eDPXqiEzDFUTNqkYuwOhHFPqTg25L-vREv1kQZUoLUfskVPGpwFhGExFkPk5PgwVaNbe-_D7NeJmmckab4I3bMJfddewyO8mtpHyyiON0m0TnAV_6fesQgziQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><source>esp@cenet</source><creator>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</creator><creatorcontrib>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</creatorcontrib><description>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231207&DB=EPODOC&CC=US&NR=2023394284A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231207&DB=EPODOC&CC=US&NR=2023394284A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zwicklbauer, Stefan</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Chattha, Muhammad Ali</creatorcontrib><creatorcontrib>van Elst, Ludger</creatorcontrib><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><description>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4GzoG0HHc_maqNtUi5XxUFKkTiJFur7YxUfwOkf_m-sLiVJ7jSg1eDPXqiEzDFUTNqkYuwOhHFPqTg25L-vREv1kQZUoLUfskVPGpwFhGExFkPk5PgwVaNbe-_D7NeJmmckab4I3bMJfddewyO8mtpHyyiON0m0TnAV_6fesQgziQ</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Zwicklbauer, Stefan</creator><creator>Ahmed, Sheraz</creator><creator>Chattha, Muhammad Ali</creator><creator>van Elst, Ludger</creator><scope>EVB</scope></search><sort><creationdate>20231207</creationdate><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><author>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023394284A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zwicklbauer, Stefan</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Chattha, Muhammad Ali</creatorcontrib><creatorcontrib>van Elst, Ludger</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zwicklbauer, Stefan</au><au>Ahmed, Sheraz</au><au>Chattha, Muhammad Ali</au><au>van Elst, Ludger</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><date>2023-12-07</date><risdate>2023</risdate><abstract>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023394284A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zwicklbauer,%20Stefan&rft.date=2023-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023394284A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |