METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK

A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zwicklbauer, Stefan, Ahmed, Sheraz, Chattha, Muhammad Ali, van Elst, Ludger
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zwicklbauer, Stefan
Ahmed, Sheraz
Chattha, Muhammad Ali
van Elst, Ludger
description A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023394284A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023394284A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023394284A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4GzoG0HHc_maqNtUi5XxUFKkTiJFur7YxUfwOkf_m-sLiVJ7jSg1eDPXqiEzDFUTNqkYuwOhHFPqTg25L-vREv1kQZUoLUfskVPGpwFhGExFkPk5PgwVaNbe-_D7NeJmmckab4I3bMJfddewyO8mtpHyyiON0m0TnAV_6fesQgziQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><source>esp@cenet</source><creator>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</creator><creatorcontrib>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</creatorcontrib><description>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231207&amp;DB=EPODOC&amp;CC=US&amp;NR=2023394284A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231207&amp;DB=EPODOC&amp;CC=US&amp;NR=2023394284A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zwicklbauer, Stefan</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Chattha, Muhammad Ali</creatorcontrib><creatorcontrib>van Elst, Ludger</creatorcontrib><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><description>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4GzoG0HHc_maqNtUi5XxUFKkTiJFur7YxUfwOkf_m-sLiVJ7jSg1eDPXqiEzDFUTNqkYuwOhHFPqTg25L-vREv1kQZUoLUfskVPGpwFhGExFkPk5PgwVaNbe-_D7NeJmmckab4I3bMJfddewyO8mtpHyyiON0m0TnAV_6fesQgziQ</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Zwicklbauer, Stefan</creator><creator>Ahmed, Sheraz</creator><creator>Chattha, Muhammad Ali</creator><creator>van Elst, Ludger</creator><scope>EVB</scope></search><sort><creationdate>20231207</creationdate><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><author>Zwicklbauer, Stefan ; Ahmed, Sheraz ; Chattha, Muhammad Ali ; van Elst, Ludger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023394284A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zwicklbauer, Stefan</creatorcontrib><creatorcontrib>Ahmed, Sheraz</creatorcontrib><creatorcontrib>Chattha, Muhammad Ali</creatorcontrib><creatorcontrib>van Elst, Ludger</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zwicklbauer, Stefan</au><au>Ahmed, Sheraz</au><au>Chattha, Muhammad Ali</au><au>van Elst, Ludger</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK</title><date>2023-12-07</date><risdate>2023</risdate><abstract>A computer-implemented method for predicting trajectories is disclosed based on a main neural network by fusing data-driven and knowledge-driven features. The method includes: receiving first input information as time-dependent numerical information; receiving second input information, as rule- or knowledge-based information including one or more trajectory prediction information; processing second input information by using an auto-encoder configured to encode the second input information by extracting features from the second input information, thereby obtaining encoded second input information; providing the encoded second input information to a fusion network, the fusion network providing transformed information obtained by transforming encoded second input information according to properties of the main neural network; providing the first input information and the transformed information to the main neural network, the main neural network fusing the first input information and the transformed information in order to provide trajectory predictions based thereon; and outputting the trajectory prediction.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023394284A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title METHOD AND SYSTEM FOR PREDICTING TRAJECTORIES FOR MANEUVER PLANNING BASED ON A NEURAL NETWORK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T06%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zwicklbauer,%20Stefan&rft.date=2023-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023394284A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true