SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS
Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kreis, Karsten Julian Vahdat, Arash Dockhorn, Tim |
description | Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023377099A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023377099A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023377099A13</originalsourceid><addsrcrecordid>eNrjZIgKjvQL8XAN9ozy9HNXcPb3C3H1C1EIDQbxXDzd3IAsfz8FX38XV59gBU8_uAp3Vz_XIMcQkGRwZHCIq2-wgqOfi4JjQICPpzNYPJiHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbm5sbWFo6GhoTpwoAfeIzdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><source>esp@cenet</source><creator>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</creator><creatorcontrib>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</creatorcontrib><description>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231123&DB=EPODOC&CC=US&NR=2023377099A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231123&DB=EPODOC&CC=US&NR=2023377099A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Vahdat, Arash</creatorcontrib><creatorcontrib>Dockhorn, Tim</creatorcontrib><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><description>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgKjvQL8XAN9ozy9HNXcPb3C3H1C1EIDQbxXDzd3IAsfz8FX38XV59gBU8_uAp3Vz_XIMcQkGRwZHCIq2-wgqOfi4JjQICPpzNYPJiHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbm5sbWFo6GhoTpwoAfeIzdA</recordid><startdate>20231123</startdate><enddate>20231123</enddate><creator>Kreis, Karsten Julian</creator><creator>Vahdat, Arash</creator><creator>Dockhorn, Tim</creator><scope>EVB</scope></search><sort><creationdate>20231123</creationdate><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><author>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023377099A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Vahdat, Arash</creatorcontrib><creatorcontrib>Dockhorn, Tim</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kreis, Karsten Julian</au><au>Vahdat, Arash</au><au>Dockhorn, Tim</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><date>2023-11-23</date><risdate>2023</risdate><abstract>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023377099A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kreis,%20Karsten%20Julian&rft.date=2023-11-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023377099A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |