SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS

Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreis, Karsten Julian, Vahdat, Arash, Dockhorn, Tim
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kreis, Karsten Julian
Vahdat, Arash
Dockhorn, Tim
description Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023377099A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023377099A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023377099A13</originalsourceid><addsrcrecordid>eNrjZIgKjvQL8XAN9ozy9HNXcPb3C3H1C1EIDQbxXDzd3IAsfz8FX38XV59gBU8_uAp3Vz_XIMcQkGRwZHCIq2-wgqOfi4JjQICPpzNYPJiHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbm5sbWFo6GhoTpwoAfeIzdA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><source>esp@cenet</source><creator>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</creator><creatorcontrib>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</creatorcontrib><description>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231123&amp;DB=EPODOC&amp;CC=US&amp;NR=2023377099A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231123&amp;DB=EPODOC&amp;CC=US&amp;NR=2023377099A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Vahdat, Arash</creatorcontrib><creatorcontrib>Dockhorn, Tim</creatorcontrib><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><description>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIgKjvQL8XAN9ozy9HNXcPb3C3H1C1EIDQbxXDzd3IAsfz8FX38XV59gBU8_uAp3Vz_XIMcQkGRwZHCIq2-wgqOfi4JjQICPpzNYPJiHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbm5sbWFo6GhoTpwoAfeIzdA</recordid><startdate>20231123</startdate><enddate>20231123</enddate><creator>Kreis, Karsten Julian</creator><creator>Vahdat, Arash</creator><creator>Dockhorn, Tim</creator><scope>EVB</scope></search><sort><creationdate>20231123</creationdate><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><author>Kreis, Karsten Julian ; Vahdat, Arash ; Dockhorn, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023377099A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kreis, Karsten Julian</creatorcontrib><creatorcontrib>Vahdat, Arash</creatorcontrib><creatorcontrib>Dockhorn, Tim</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kreis, Karsten Julian</au><au>Vahdat, Arash</au><au>Dockhorn, Tim</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS</title><date>2023-11-23</date><risdate>2023</risdate><abstract>Approaches presented herein provide for the generation of synthesized data from input noise using a denoising diffusion network. A higher order differential equation solver can be used for the denoising process, with one or more higher-order terms being distilled into one or more separate efficient neural networks. A separate, efficient neural network can be called together with a primary denoising model at inference time without significant loss in sampling efficiency. The separate neural network can provide information about the curvature (or other higher-order term) of the differential equation, representing a denoising trajectory, that can be used by the primary diffusion network to denoise the image using fewer denoising iterations.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023377099A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title SYNTHESIZING CONTENT USING DIFFUSION MODELS IN CONTENT GENERATION SYSTEMS AND APPLICATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A42%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kreis,%20Karsten%20Julian&rft.date=2023-11-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023377099A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true