AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA
Assistance device for automatically generating training data of a time series of sensor data, further on called temporal sensor data, applied to train an Artificial Intelligence system used for detecting anomalous behavior of a technical system, including a processor configured to perform - obtainin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Günnemann-Gholizadeh, Nikou Galabov, Filip |
description | Assistance device for automatically generating training data of a time series of sensor data, further on called temporal sensor data, applied to train an Artificial Intelligence system used for detecting anomalous behavior of a technical system, including a processor configured to perform - obtaining historical temporal sensor data, dividing the historical temporal sensor data into a temporal sequence of segments and assigning one segment type out of several different segment types to each segment, iteratively for each segment, determining a neighborhood pattern of segment types, determining the most frequently occurring neighborhood pattern from all determined neighborhood patterns as reference pattern for normal operation of the technical system, -selecting a subsequence of segments out of the historical temporal sensor data, which is ordered according to the reference pattern, and - outputting the subsequence of segments for applying as training data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023351214A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023351214A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023351214A13</originalsourceid><addsrcrecordid>eNrjZHBzDA3x93UM8XR29PGJVHB39XMNAvL83BVCghw9_UAMF8cQRwV_NwVHhRBPX1eFYNcgT9dgkECwq1-wfxBYnoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRubGhoZmjgaGhOnCgBCwCzb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA</title><source>esp@cenet</source><creator>Günnemann-Gholizadeh, Nikou ; Galabov, Filip</creator><creatorcontrib>Günnemann-Gholizadeh, Nikou ; Galabov, Filip</creatorcontrib><description>Assistance device for automatically generating training data of a time series of sensor data, further on called temporal sensor data, applied to train an Artificial Intelligence system used for detecting anomalous behavior of a technical system, including a processor configured to perform - obtaining historical temporal sensor data, dividing the historical temporal sensor data into a temporal sequence of segments and assigning one segment type out of several different segment types to each segment, iteratively for each segment, determining a neighborhood pattern of segment types, determining the most frequently occurring neighborhood pattern from all determined neighborhood patterns as reference pattern for normal operation of the technical system, -selecting a subsequence of segments out of the historical temporal sensor data, which is ordered according to the reference pattern, and - outputting the subsequence of segments for applying as training data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231102&DB=EPODOC&CC=US&NR=2023351214A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231102&DB=EPODOC&CC=US&NR=2023351214A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Günnemann-Gholizadeh, Nikou</creatorcontrib><creatorcontrib>Galabov, Filip</creatorcontrib><title>AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA</title><description>Assistance device for automatically generating training data of a time series of sensor data, further on called temporal sensor data, applied to train an Artificial Intelligence system used for detecting anomalous behavior of a technical system, including a processor configured to perform - obtaining historical temporal sensor data, dividing the historical temporal sensor data into a temporal sequence of segments and assigning one segment type out of several different segment types to each segment, iteratively for each segment, determining a neighborhood pattern of segment types, determining the most frequently occurring neighborhood pattern from all determined neighborhood patterns as reference pattern for normal operation of the technical system, -selecting a subsequence of segments out of the historical temporal sensor data, which is ordered according to the reference pattern, and - outputting the subsequence of segments for applying as training data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBzDA3x93UM8XR29PGJVHB39XMNAvL83BVCghw9_UAMF8cQRwV_NwVHhRBPX1eFYNcgT9dgkECwq1-wfxBYnoeBNS0xpziVF0pzMyi7uYY4e-imFuTHpxYXJCan5qWWxIcGGxkYGRubGhoZmjgaGhOnCgBCwCzb</recordid><startdate>20231102</startdate><enddate>20231102</enddate><creator>Günnemann-Gholizadeh, Nikou</creator><creator>Galabov, Filip</creator><scope>EVB</scope></search><sort><creationdate>20231102</creationdate><title>AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA</title><author>Günnemann-Gholizadeh, Nikou ; Galabov, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023351214A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><toplevel>online_resources</toplevel><creatorcontrib>Günnemann-Gholizadeh, Nikou</creatorcontrib><creatorcontrib>Galabov, Filip</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Günnemann-Gholizadeh, Nikou</au><au>Galabov, Filip</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA</title><date>2023-11-02</date><risdate>2023</risdate><abstract>Assistance device for automatically generating training data of a time series of sensor data, further on called temporal sensor data, applied to train an Artificial Intelligence system used for detecting anomalous behavior of a technical system, including a processor configured to perform - obtaining historical temporal sensor data, dividing the historical temporal sensor data into a temporal sequence of segments and assigning one segment type out of several different segment types to each segment, iteratively for each segment, determining a neighborhood pattern of segment types, determining the most frequently occurring neighborhood pattern from all determined neighborhood patterns as reference pattern for normal operation of the technical system, -selecting a subsequence of segments out of the historical temporal sensor data, which is ordered according to the reference pattern, and - outputting the subsequence of segments for applying as training data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023351214A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING |
title | AUTOMATICALLY GENERATING TRAINING DATA OF A TIME SERIES OF SENSOR DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=G%C3%BCnnemann-Gholizadeh,%20Nikou&rft.date=2023-11-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023351214A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |