CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING

Assemblies, system, methods, and devices for monitoring characteristics of a substrate disposed in a recess within a processing chamber. An assembly includes an enclosure structure forming an interior volume configured to support a substrate disposed within the interior volume. The substrate may be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hicks, III, Albert Barrett, Malkov, Serghei
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hicks, III, Albert Barrett
Malkov, Serghei
description Assemblies, system, methods, and devices for monitoring characteristics of a substrate disposed in a recess within a processing chamber. An assembly includes an enclosure structure forming an interior volume configured to support a substrate disposed within the interior volume. The substrate may be selectively removed from the enclosure structure. The enclosure structure may include an upper interior surface and a lower interior surface located below the upper interior surface. The interior volume is configured to direct a first mass transport of a reactive species to a first surface of the substrate, the reactive species corresponding to a substrate process. A first portion of the lower interior surface is configured to support the substrate. A second portion of the lower interior surface forms a channel configured to provide a second mass transport of the reactive species to a second surface of the substrate opposite the first surface.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023317531A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023317531A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023317531A13</originalsourceid><addsrcrecordid>eNrjZNB19nD19XR29NF18Q92VQgOdQoOCXIMcVVwcQ3wD_YM8fT3U_D19_MM8Q_y9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkbGxobmpsaGjobGxKkCAHKZJq0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING</title><source>esp@cenet</source><creator>Hicks, III, Albert Barrett ; Malkov, Serghei</creator><creatorcontrib>Hicks, III, Albert Barrett ; Malkov, Serghei</creatorcontrib><description>Assemblies, system, methods, and devices for monitoring characteristics of a substrate disposed in a recess within a processing chamber. An assembly includes an enclosure structure forming an interior volume configured to support a substrate disposed within the interior volume. The substrate may be selectively removed from the enclosure structure. The enclosure structure may include an upper interior surface and a lower interior surface located below the upper interior surface. The interior volume is configured to direct a first mass transport of a reactive species to a first surface of the substrate, the reactive species corresponding to a substrate process. A first portion of the lower interior surface is configured to support the substrate. A second portion of the lower interior surface forms a channel configured to provide a second mass transport of the reactive species to a second surface of the substrate opposite the first surface.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231005&amp;DB=EPODOC&amp;CC=US&amp;NR=2023317531A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231005&amp;DB=EPODOC&amp;CC=US&amp;NR=2023317531A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hicks, III, Albert Barrett</creatorcontrib><creatorcontrib>Malkov, Serghei</creatorcontrib><title>CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING</title><description>Assemblies, system, methods, and devices for monitoring characteristics of a substrate disposed in a recess within a processing chamber. An assembly includes an enclosure structure forming an interior volume configured to support a substrate disposed within the interior volume. The substrate may be selectively removed from the enclosure structure. The enclosure structure may include an upper interior surface and a lower interior surface located below the upper interior surface. The interior volume is configured to direct a first mass transport of a reactive species to a first surface of the substrate, the reactive species corresponding to a substrate process. A first portion of the lower interior surface is configured to support the substrate. A second portion of the lower interior surface forms a channel configured to provide a second mass transport of the reactive species to a second surface of the substrate opposite the first surface.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB19nD19XR29NF18Q92VQgOdQoOCXIMcVVwcQ3wD_YM8fT3U_D19_MM8Q_y9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkbGxobmpsaGjobGxKkCAHKZJq0</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Hicks, III, Albert Barrett</creator><creator>Malkov, Serghei</creator><scope>EVB</scope></search><sort><creationdate>20231005</creationdate><title>CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING</title><author>Hicks, III, Albert Barrett ; Malkov, Serghei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023317531A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>Hicks, III, Albert Barrett</creatorcontrib><creatorcontrib>Malkov, Serghei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hicks, III, Albert Barrett</au><au>Malkov, Serghei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING</title><date>2023-10-05</date><risdate>2023</risdate><abstract>Assemblies, system, methods, and devices for monitoring characteristics of a substrate disposed in a recess within a processing chamber. An assembly includes an enclosure structure forming an interior volume configured to support a substrate disposed within the interior volume. The substrate may be selectively removed from the enclosure structure. The enclosure structure may include an upper interior surface and a lower interior surface located below the upper interior surface. The interior volume is configured to direct a first mass transport of a reactive species to a first surface of the substrate, the reactive species corresponding to a substrate process. A first portion of the lower interior surface is configured to support the substrate. A second portion of the lower interior surface forms a channel configured to provide a second mass transport of the reactive species to a second surface of the substrate opposite the first surface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023317531A1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title CHEMICAL-DOSE SUBSTRATE DEPOSITION MONITORING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hicks,%20III,%20Albert%20Barrett&rft.date=2023-10-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023317531A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true