ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sifre, Laurent, Borgeaud Dit Avocat, Sebastian, Hoffmann, Jordan, Mensch, Arthur
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sifre, Laurent
Borgeaud Dit Avocat, Sebastian
Hoffmann, Jordan
Mensch, Arthur
description Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute budget that characterizes an amount of computing resources allocated for training a machine learning model to perform a machine learning task; processing the data defining the compute budget using an allocation mapping, in accordance with a set of allocation mapping parameters, to generate an allocation tuple defining: (i) a target model size for the machine learning model, and (ii) a target amount of training data for training the machine learning model; instantiating the machine learning model, where the machine learning model has the target model size; and obtaining the target amount of training data for training the machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023315532A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023315532A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023315532A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRbtxIeo_DLgWbEI_YEymNpCH5IHgphSJK7GF-v9Ig7h2dQ-Hw11XI2rtBEZlzyCcuaRCnoJLXlCAE8UrkQXjJGkI6kaAVkL0qOxSSowIMvmFf9K1gGBQdMoSaEJfbLnYVqvH8Jzz7rubat9SFN0hT2Of52m451d-9ymwI-O8bhrOsOb_VR9kjDgd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL</title><source>esp@cenet</source><creator>Sifre, Laurent ; Borgeaud Dit Avocat, Sebastian ; Hoffmann, Jordan ; Mensch, Arthur</creator><creatorcontrib>Sifre, Laurent ; Borgeaud Dit Avocat, Sebastian ; Hoffmann, Jordan ; Mensch, Arthur</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute budget that characterizes an amount of computing resources allocated for training a machine learning model to perform a machine learning task; processing the data defining the compute budget using an allocation mapping, in accordance with a set of allocation mapping parameters, to generate an allocation tuple defining: (i) a target model size for the machine learning model, and (ii) a target amount of training data for training the machine learning model; instantiating the machine learning model, where the machine learning model has the target model size; and obtaining the target amount of training data for training the machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231005&amp;DB=EPODOC&amp;CC=US&amp;NR=2023315532A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231005&amp;DB=EPODOC&amp;CC=US&amp;NR=2023315532A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sifre, Laurent</creatorcontrib><creatorcontrib>Borgeaud Dit Avocat, Sebastian</creatorcontrib><creatorcontrib>Hoffmann, Jordan</creatorcontrib><creatorcontrib>Mensch, Arthur</creatorcontrib><title>ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute budget that characterizes an amount of computing resources allocated for training a machine learning model to perform a machine learning task; processing the data defining the compute budget using an allocation mapping, in accordance with a set of allocation mapping parameters, to generate an allocation tuple defining: (i) a target model size for the machine learning model, and (ii) a target amount of training data for training the machine learning model; instantiating the machine learning model, where the machine learning model has the target model size; and obtaining the target amount of training data for training the machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAQRbtxIeo_DLgWbEI_YEymNpCH5IHgphSJK7GF-v9Ig7h2dQ-Hw11XI2rtBEZlzyCcuaRCnoJLXlCAE8UrkQXjJGkI6kaAVkL0qOxSSowIMvmFf9K1gGBQdMoSaEJfbLnYVqvH8Jzz7rubat9SFN0hT2Of52m451d-9ymwI-O8bhrOsOb_VR9kjDgd</recordid><startdate>20231005</startdate><enddate>20231005</enddate><creator>Sifre, Laurent</creator><creator>Borgeaud Dit Avocat, Sebastian</creator><creator>Hoffmann, Jordan</creator><creator>Mensch, Arthur</creator><scope>EVB</scope></search><sort><creationdate>20231005</creationdate><title>ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL</title><author>Sifre, Laurent ; Borgeaud Dit Avocat, Sebastian ; Hoffmann, Jordan ; Mensch, Arthur</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023315532A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sifre, Laurent</creatorcontrib><creatorcontrib>Borgeaud Dit Avocat, Sebastian</creatorcontrib><creatorcontrib>Hoffmann, Jordan</creatorcontrib><creatorcontrib>Mensch, Arthur</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sifre, Laurent</au><au>Borgeaud Dit Avocat, Sebastian</au><au>Hoffmann, Jordan</au><au>Mensch, Arthur</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL</title><date>2023-10-05</date><risdate>2023</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to perform a machine learning task. In one aspect, a method performed by one or more computer is described. The method includes: obtaining data defining a compute budget that characterizes an amount of computing resources allocated for training a machine learning model to perform a machine learning task; processing the data defining the compute budget using an allocation mapping, in accordance with a set of allocation mapping parameters, to generate an allocation tuple defining: (i) a target model size for the machine learning model, and (ii) a target amount of training data for training the machine learning model; instantiating the machine learning model, where the machine learning model has the target model size; and obtaining the target amount of training data for training the machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023315532A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ALLOCATING COMPUTING RESOURCES BETWEEN MODEL SIZE AND TRAINING DATA DURING TRAINING OF A MACHINE LEARNING MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sifre,%20Laurent&rft.date=2023-10-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023315532A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true