BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING
A bundle generation engine provides recommendations for an item and at least one compatible item. Upon receiving an item listing for an item at a listing platform, the bundle generation engine determines that unstructured text of an item description for the item listing includes one or more compatib...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DURAIVENKATESH, Lakshimi PERIYATHAMBI, Ramesh MOHAN, Kishore Kumar |
description | A bundle generation engine provides recommendations for an item and at least one compatible item. Upon receiving an item listing for an item at a listing platform, the bundle generation engine determines that unstructured text of an item description for the item listing includes one or more compatible items. For example, the bundle generation engine may use a classification model to determine the unstructured text includes the one or more compatible items. Based on determining that the unstructured text includes the one or more compatible items, the bundle generation engine identifies one or more identifiers within the unstructured text of the item description. For example, the identifiers may be model identifiers or brand identifiers. In aspects, the identifiers are identified using one or more natural language processing models. A bundle recommendation is provided to a user device based on the one or more identifiers. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023298081A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023298081A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023298081A13</originalsourceid><addsrcrecordid>eNrjZLB3CvVz8XFVcA5ydQzx9PdTcAvy91VwcQ12DvIMAAs4-_uFuPqFKIQGe_q5K_g6Ont4-rkq-Lg6BvkBBXgYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbGRpYWBhaGjoTFxqgA20itt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING</title><source>esp@cenet</source><creator>DURAIVENKATESH, Lakshimi ; PERIYATHAMBI, Ramesh ; MOHAN, Kishore Kumar</creator><creatorcontrib>DURAIVENKATESH, Lakshimi ; PERIYATHAMBI, Ramesh ; MOHAN, Kishore Kumar</creatorcontrib><description>A bundle generation engine provides recommendations for an item and at least one compatible item. Upon receiving an item listing for an item at a listing platform, the bundle generation engine determines that unstructured text of an item description for the item listing includes one or more compatible items. For example, the bundle generation engine may use a classification model to determine the unstructured text includes the one or more compatible items. Based on determining that the unstructured text includes the one or more compatible items, the bundle generation engine identifies one or more identifiers within the unstructured text of the item description. For example, the identifiers may be model identifiers or brand identifiers. In aspects, the identifiers are identified using one or more natural language processing models. A bundle recommendation is provided to a user device based on the one or more identifiers.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230921&DB=EPODOC&CC=US&NR=2023298081A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230921&DB=EPODOC&CC=US&NR=2023298081A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DURAIVENKATESH, Lakshimi</creatorcontrib><creatorcontrib>PERIYATHAMBI, Ramesh</creatorcontrib><creatorcontrib>MOHAN, Kishore Kumar</creatorcontrib><title>BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING</title><description>A bundle generation engine provides recommendations for an item and at least one compatible item. Upon receiving an item listing for an item at a listing platform, the bundle generation engine determines that unstructured text of an item description for the item listing includes one or more compatible items. For example, the bundle generation engine may use a classification model to determine the unstructured text includes the one or more compatible items. Based on determining that the unstructured text includes the one or more compatible items, the bundle generation engine identifies one or more identifiers within the unstructured text of the item description. For example, the identifiers may be model identifiers or brand identifiers. In aspects, the identifiers are identified using one or more natural language processing models. A bundle recommendation is provided to a user device based on the one or more identifiers.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB3CvVz8XFVcA5ydQzx9PdTcAvy91VwcQ12DvIMAAs4-_uFuPqFKIQGe_q5K_g6Ont4-rkq-Lg6BvkBBXgYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbGRpYWBhaGjoTFxqgA20itt</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>DURAIVENKATESH, Lakshimi</creator><creator>PERIYATHAMBI, Ramesh</creator><creator>MOHAN, Kishore Kumar</creator><scope>EVB</scope></search><sort><creationdate>20230921</creationdate><title>BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING</title><author>DURAIVENKATESH, Lakshimi ; PERIYATHAMBI, Ramesh ; MOHAN, Kishore Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023298081A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>DURAIVENKATESH, Lakshimi</creatorcontrib><creatorcontrib>PERIYATHAMBI, Ramesh</creatorcontrib><creatorcontrib>MOHAN, Kishore Kumar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DURAIVENKATESH, Lakshimi</au><au>PERIYATHAMBI, Ramesh</au><au>MOHAN, Kishore Kumar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING</title><date>2023-09-21</date><risdate>2023</risdate><abstract>A bundle generation engine provides recommendations for an item and at least one compatible item. Upon receiving an item listing for an item at a listing platform, the bundle generation engine determines that unstructured text of an item description for the item listing includes one or more compatible items. For example, the bundle generation engine may use a classification model to determine the unstructured text includes the one or more compatible items. Based on determining that the unstructured text includes the one or more compatible items, the bundle generation engine identifies one or more identifiers within the unstructured text of the item description. For example, the identifiers may be model identifiers or brand identifiers. In aspects, the identifiers are identified using one or more natural language processing models. A bundle recommendation is provided to a user device based on the one or more identifiers.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023298081A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | BUNDLE CREATION FROM DESCRIPTION CONTENT USING MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DURAIVENKATESH,%20Lakshimi&rft.date=2023-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023298081A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |