LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS
Generally discussed herein are devices, systems, and methods for multi-lingual model generation. A method can include determining, for low-resource languages, respective a language similarity value indicating language similarity between each of the low-resource languages, clustering the low-resource...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHANG, Shuangyu BEHRE, Piyush PARTHASARATHY, Sarangarajan MIAO, Li WU, Jian |
description | Generally discussed herein are devices, systems, and methods for multi-lingual model generation. A method can include determining, for low-resource languages, respective a language similarity value indicating language similarity between each of the low-resource languages, clustering the low-resource languages into groups based on the respective language similarity value, aggregating training data of languages corresponding to a given group resulting in aggregated training data, and training a re-ranking language model based on the aggregated training data resulting in a trained re-ranking language model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023297606A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023297606A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023297606A13</originalsourceid><addsrcrecordid>eNrjZNDz8Q_XDXIN9g8NcnbVUfAN9Qnx1PXx9HMPdfRRCAly9At28w_ydQ1S8PV3cfUJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGxkaW5mYGZo6GxsSpAgCdDCcB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS</title><source>esp@cenet</source><creator>CHANG, Shuangyu ; BEHRE, Piyush ; PARTHASARATHY, Sarangarajan ; MIAO, Li ; WU, Jian</creator><creatorcontrib>CHANG, Shuangyu ; BEHRE, Piyush ; PARTHASARATHY, Sarangarajan ; MIAO, Li ; WU, Jian</creatorcontrib><description>Generally discussed herein are devices, systems, and methods for multi-lingual model generation. A method can include determining, for low-resource languages, respective a language similarity value indicating language similarity between each of the low-resource languages, clustering the low-resource languages into groups based on the respective language similarity value, aggregating training data of languages corresponding to a given group resulting in aggregated training data, and training a re-ranking language model based on the aggregated training data resulting in a trained re-ranking language model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230921&DB=EPODOC&CC=US&NR=2023297606A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230921&DB=EPODOC&CC=US&NR=2023297606A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHANG, Shuangyu</creatorcontrib><creatorcontrib>BEHRE, Piyush</creatorcontrib><creatorcontrib>PARTHASARATHY, Sarangarajan</creatorcontrib><creatorcontrib>MIAO, Li</creatorcontrib><creatorcontrib>WU, Jian</creatorcontrib><title>LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS</title><description>Generally discussed herein are devices, systems, and methods for multi-lingual model generation. A method can include determining, for low-resource languages, respective a language similarity value indicating language similarity between each of the low-resource languages, clustering the low-resource languages into groups based on the respective language similarity value, aggregating training data of languages corresponding to a given group resulting in aggregated training data, and training a re-ranking language model based on the aggregated training data resulting in a trained re-ranking language model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDz8Q_XDXIN9g8NcnbVUfAN9Qnx1PXx9HMPdfRRCAly9At28w_ydQ1S8PV3cfUJ5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGxkaW5mYGZo6GxsSpAgCdDCcB</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>CHANG, Shuangyu</creator><creator>BEHRE, Piyush</creator><creator>PARTHASARATHY, Sarangarajan</creator><creator>MIAO, Li</creator><creator>WU, Jian</creator><scope>EVB</scope></search><sort><creationdate>20230921</creationdate><title>LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS</title><author>CHANG, Shuangyu ; BEHRE, Piyush ; PARTHASARATHY, Sarangarajan ; MIAO, Li ; WU, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023297606A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHANG, Shuangyu</creatorcontrib><creatorcontrib>BEHRE, Piyush</creatorcontrib><creatorcontrib>PARTHASARATHY, Sarangarajan</creatorcontrib><creatorcontrib>MIAO, Li</creatorcontrib><creatorcontrib>WU, Jian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHANG, Shuangyu</au><au>BEHRE, Piyush</au><au>PARTHASARATHY, Sarangarajan</au><au>MIAO, Li</au><au>WU, Jian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS</title><date>2023-09-21</date><risdate>2023</risdate><abstract>Generally discussed herein are devices, systems, and methods for multi-lingual model generation. A method can include determining, for low-resource languages, respective a language similarity value indicating language similarity between each of the low-resource languages, clustering the low-resource languages into groups based on the respective language similarity value, aggregating training data of languages corresponding to a given group resulting in aggregated training data, and training a re-ranking language model based on the aggregated training data resulting in a trained re-ranking language model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023297606A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | LOW-RESOURCE, MULTI-LINGUAL TRANSFORMER MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHANG,%20Shuangyu&rft.date=2023-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023297606A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |