COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION

Aspects of the disclosure relate to using machine learning for foreground mask estimation. A computing platform may receive a set of images and corresponding ground truth foreground masks. Using the set of images and the corresponding ground truth foreground masks, the computing platform may train t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LEVRING, Henrik, SANDERSON, Hugh Ross, FLACK, Julien Charles
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LEVRING, Henrik
SANDERSON, Hugh Ross
FLACK, Julien Charles
description Aspects of the disclosure relate to using machine learning for foreground mask estimation. A computing platform may receive a set of images and corresponding ground truth foreground masks. Using the set of images and the corresponding ground truth foreground masks, the computing platform may train the first neural network to distinguish between image foregrounds and backgrounds, which may result in a first set of foreground masks. For each image and based on a corresponding foreground mask, the computing platform may estimate a first background clean plate. Using the set of images, the first background clean plates, and a set of corresponding ground truth mask images, the computing platform may train a second neural network, which may configure the second neural network to output foreground masks based on video input information. The computing platform may deploy, to an implementation computing device, the second neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023267620A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023267620A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023267620A13</originalsourceid><addsrcrecordid>eNrjZPBw9vcNCA3x9HNXCPBxDHHzD_JVCA0GcX0dnT08_VwVfFwdg_xAAkA5EHZ1D_IP9XMBygd7K7gGh3j6OoZ4-vvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjIzNzMyMDR0Nj4lQBAOCVLhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION</title><source>esp@cenet</source><creator>LEVRING, Henrik ; SANDERSON, Hugh Ross ; FLACK, Julien Charles</creator><creatorcontrib>LEVRING, Henrik ; SANDERSON, Hugh Ross ; FLACK, Julien Charles</creatorcontrib><description>Aspects of the disclosure relate to using machine learning for foreground mask estimation. A computing platform may receive a set of images and corresponding ground truth foreground masks. Using the set of images and the corresponding ground truth foreground masks, the computing platform may train the first neural network to distinguish between image foregrounds and backgrounds, which may result in a first set of foreground masks. For each image and based on a corresponding foreground mask, the computing platform may estimate a first background clean plate. Using the set of images, the first background clean plates, and a set of corresponding ground truth mask images, the computing platform may train a second neural network, which may configure the second neural network to output foreground masks based on video input information. The computing platform may deploy, to an implementation computing device, the second neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=US&amp;NR=2023267620A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=US&amp;NR=2023267620A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LEVRING, Henrik</creatorcontrib><creatorcontrib>SANDERSON, Hugh Ross</creatorcontrib><creatorcontrib>FLACK, Julien Charles</creatorcontrib><title>COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION</title><description>Aspects of the disclosure relate to using machine learning for foreground mask estimation. A computing platform may receive a set of images and corresponding ground truth foreground masks. Using the set of images and the corresponding ground truth foreground masks, the computing platform may train the first neural network to distinguish between image foregrounds and backgrounds, which may result in a first set of foreground masks. For each image and based on a corresponding foreground mask, the computing platform may estimate a first background clean plate. Using the set of images, the first background clean plates, and a set of corresponding ground truth mask images, the computing platform may train a second neural network, which may configure the second neural network to output foreground masks based on video input information. The computing platform may deploy, to an implementation computing device, the second neural network.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBw9vcNCA3x9HNXCPBxDHHzD_JVCA0GcX0dnT08_VwVfFwdg_xAAkA5EHZ1D_IP9XMBygd7K7gGh3j6OoZ4-vvxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjIzNzMyMDR0Nj4lQBAOCVLhA</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>LEVRING, Henrik</creator><creator>SANDERSON, Hugh Ross</creator><creator>FLACK, Julien Charles</creator><scope>EVB</scope></search><sort><creationdate>20230824</creationdate><title>COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION</title><author>LEVRING, Henrik ; SANDERSON, Hugh Ross ; FLACK, Julien Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023267620A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LEVRING, Henrik</creatorcontrib><creatorcontrib>SANDERSON, Hugh Ross</creatorcontrib><creatorcontrib>FLACK, Julien Charles</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LEVRING, Henrik</au><au>SANDERSON, Hugh Ross</au><au>FLACK, Julien Charles</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION</title><date>2023-08-24</date><risdate>2023</risdate><abstract>Aspects of the disclosure relate to using machine learning for foreground mask estimation. A computing platform may receive a set of images and corresponding ground truth foreground masks. Using the set of images and the corresponding ground truth foreground masks, the computing platform may train the first neural network to distinguish between image foregrounds and backgrounds, which may result in a first set of foreground masks. For each image and based on a corresponding foreground mask, the computing platform may estimate a first background clean plate. Using the set of images, the first background clean plates, and a set of corresponding ground truth mask images, the computing platform may train a second neural network, which may configure the second neural network to output foreground masks based on video input information. The computing platform may deploy, to an implementation computing device, the second neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023267620A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title COMPUTING PLATFORM USING MACHINE LEARNING FOR FOREGROUND MASK ESTIMATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LEVRING,%20Henrik&rft.date=2023-08-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023267620A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true