NEURAL TREES

A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NORI, Aditya Vithal, TANNO, Ryutaro, CRIMINISI, Antonio
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NORI, Aditya Vithal
TANNO, Ryutaro
CRIMINISI, Antonio
description A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023267381A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023267381A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023267381A13</originalsourceid><addsrcrecordid>eNrjZODxcw0NcvRRCAlydQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkbGRmbmxhaGjobGxKkCAAHtHVU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL TREES</title><source>esp@cenet</source><creator>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</creator><creatorcontrib>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</creatorcontrib><description>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=US&amp;NR=2023267381A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230824&amp;DB=EPODOC&amp;CC=US&amp;NR=2023267381A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TANNO, Ryutaro</creatorcontrib><creatorcontrib>CRIMINISI, Antonio</creatorcontrib><title>NEURAL TREES</title><description>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZODxcw0NcvRRCAlydQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkbGRmbmxhaGjobGxKkCAAHtHVU</recordid><startdate>20230824</startdate><enddate>20230824</enddate><creator>NORI, Aditya Vithal</creator><creator>TANNO, Ryutaro</creator><creator>CRIMINISI, Antonio</creator><scope>EVB</scope></search><sort><creationdate>20230824</creationdate><title>NEURAL TREES</title><author>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023267381A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TANNO, Ryutaro</creatorcontrib><creatorcontrib>CRIMINISI, Antonio</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NORI, Aditya Vithal</au><au>TANNO, Ryutaro</au><au>CRIMINISI, Antonio</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL TREES</title><date>2023-08-24</date><risdate>2023</risdate><abstract>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023267381A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title NEURAL TREES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NORI,%20Aditya%20Vithal&rft.date=2023-08-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023267381A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true