Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data

Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MIMAROGLU, Selim, SHEN, Anqi, GUNEL, Arhan, BENJAMIN, Oren
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MIMAROGLU, Selim
SHEN, Anqi
GUNEL, Arhan
BENJAMIN, Oren
description Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023244963A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023244963A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023244963A13</originalsourceid><addsrcrecordid>eNrjZAjwy8_T9cwrKSotzixLVfDJT0xR8M3PyyzJL8rMS1cILQaRvonJGZl5QNnUxKI8kEBiXopCQFF-cmpxcWqKQkhRYiZY2CWxJJGHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbmZhYmhk7GhoTpwoAINk3lA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><source>esp@cenet</source><creator>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</creator><creatorcontrib>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</creatorcontrib><description>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230803&amp;DB=EPODOC&amp;CC=US&amp;NR=2023244963A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230803&amp;DB=EPODOC&amp;CC=US&amp;NR=2023244963A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIMAROGLU, Selim</creatorcontrib><creatorcontrib>SHEN, Anqi</creatorcontrib><creatorcontrib>GUNEL, Arhan</creatorcontrib><creatorcontrib>BENJAMIN, Oren</creatorcontrib><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><description>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwy8_T9cwrKSotzixLVfDJT0xR8M3PyyzJL8rMS1cILQaRvonJGZl5QNnUxKI8kEBiXopCQFF-cmpxcWqKQkhRYiZY2CWxJJGHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbmZhYmhk7GhoTpwoAINk3lA</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>MIMAROGLU, Selim</creator><creator>SHEN, Anqi</creator><creator>GUNEL, Arhan</creator><creator>BENJAMIN, Oren</creator><scope>EVB</scope></search><sort><creationdate>20230803</creationdate><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><author>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023244963A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MIMAROGLU, Selim</creatorcontrib><creatorcontrib>SHEN, Anqi</creatorcontrib><creatorcontrib>GUNEL, Arhan</creatorcontrib><creatorcontrib>BENJAMIN, Oren</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIMAROGLU, Selim</au><au>SHEN, Anqi</au><au>GUNEL, Arhan</au><au>BENJAMIN, Oren</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><date>2023-08-03</date><risdate>2023</risdate><abstract>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023244963A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIMAROGLU,%20Selim&rft.date=2023-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023244963A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true