Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data
Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from h...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIMAROGLU, Selim SHEN, Anqi GUNEL, Arhan BENJAMIN, Oren |
description | Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023244963A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023244963A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023244963A13</originalsourceid><addsrcrecordid>eNrjZAjwy8_T9cwrKSotzixLVfDJT0xR8M3PyyzJL8rMS1cILQaRvonJGZl5QNnUxKI8kEBiXopCQFF-cmpxcWqKQkhRYiZY2CWxJJGHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbmZhYmhk7GhoTpwoAINk3lA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><source>esp@cenet</source><creator>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</creator><creatorcontrib>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</creatorcontrib><description>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230803&DB=EPODOC&CC=US&NR=2023244963A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230803&DB=EPODOC&CC=US&NR=2023244963A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIMAROGLU, Selim</creatorcontrib><creatorcontrib>SHEN, Anqi</creatorcontrib><creatorcontrib>GUNEL, Arhan</creatorcontrib><creatorcontrib>BENJAMIN, Oren</creatorcontrib><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><description>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAjwy8_T9cwrKSotzixLVfDJT0xR8M3PyyzJL8rMS1cILQaRvonJGZl5QNnUxKI8kEBiXopCQFF-cmpxcWqKQkhRYiZY2CWxJJGHgTUtMac4lRdKczMou7mGOHvophbkx6cWFyQmp-allsSHBhsZGBkbmZhYmhk7GhoTpwoAINk3lA</recordid><startdate>20230803</startdate><enddate>20230803</enddate><creator>MIMAROGLU, Selim</creator><creator>SHEN, Anqi</creator><creator>GUNEL, Arhan</creator><creator>BENJAMIN, Oren</creator><scope>EVB</scope></search><sort><creationdate>20230803</creationdate><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><author>MIMAROGLU, Selim ; SHEN, Anqi ; GUNEL, Arhan ; BENJAMIN, Oren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023244963A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>MIMAROGLU, Selim</creatorcontrib><creatorcontrib>SHEN, Anqi</creatorcontrib><creatorcontrib>GUNEL, Arhan</creatorcontrib><creatorcontrib>BENJAMIN, Oren</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIMAROGLU, Selim</au><au>SHEN, Anqi</au><au>GUNEL, Arhan</au><au>BENJAMIN, Oren</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data</title><date>2023-08-03</date><risdate>2023</risdate><abstract>Embodiments implement non-intrusive load monitoring using a novel learning scheme. A trained machine learning model configured to disaggregate device energy usage from household energy usage can be stored, where the machine learning model is trained to predict energy usage for a target device from household energy usage. Household energy usage over a period of time can be received, where the household energy usage includes energy consumed by the target device and energy consumed by a plurality of other devices. Using the trained machine learning model, energy usage for the target device over the period of time can be predicted based on the received household energy usage.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023244963A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Non-Intrusive Load Monitoring Using Machine Learning and Processed Training Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIMAROGLU,%20Selim&rft.date=2023-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023244963A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |