ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING

Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG, SHUEN-TAI, FANG, YU-BIN, CHOU, CHAU-YI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG, SHUEN-TAI
FANG, YU-BIN
CHOU, CHAU-YI
description Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023236980A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023236980A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023236980A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAURLtxIeo_XHDbQm1BdHmb3DaB5kGarkuRuBIt1H_wt40PXLuaYThzlsnD6IyTQs2hE-iIA0ePwJAJqRtQ5IXhKTCjbO_JgXWmcahSeD1-qyPkWLUUeS57BWhtK9l7qY0DLjvvZBXRqCey0BI6_fJ_DLGtk8V5vMxh881Vsq3JM5GF6TaEeRpP4RruQ98VeVEW5f54yHFX_kc9AaHPPoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><source>esp@cenet</source><creator>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</creator><creatorcontrib>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</creatorcontrib><description>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230727&amp;DB=EPODOC&amp;CC=US&amp;NR=2023236980A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230727&amp;DB=EPODOC&amp;CC=US&amp;NR=2023236980A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG, SHUEN-TAI</creatorcontrib><creatorcontrib>FANG, YU-BIN</creatorcontrib><creatorcontrib>CHOU, CHAU-YI</creatorcontrib><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><description>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAURLtxIeo_XHDbQm1BdHmb3DaB5kGarkuRuBIt1H_wt40PXLuaYThzlsnD6IyTQs2hE-iIA0ePwJAJqRtQ5IXhKTCjbO_JgXWmcahSeD1-qyPkWLUUeS57BWhtK9l7qY0DLjvvZBXRqCey0BI6_fJ_DLGtk8V5vMxh881Vsq3JM5GF6TaEeRpP4RruQ98VeVEW5f54yHFX_kc9AaHPPoc</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>WANG, SHUEN-TAI</creator><creator>FANG, YU-BIN</creator><creator>CHOU, CHAU-YI</creator><scope>EVB</scope></search><sort><creationdate>20230727</creationdate><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><author>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023236980A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG, SHUEN-TAI</creatorcontrib><creatorcontrib>FANG, YU-BIN</creatorcontrib><creatorcontrib>CHOU, CHAU-YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG, SHUEN-TAI</au><au>FANG, YU-BIN</au><au>CHOU, CHAU-YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><date>2023-07-27</date><risdate>2023</risdate><abstract>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023236980A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG,%20SHUEN-TAI&rft.date=2023-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023236980A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true