ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING
Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG, SHUEN-TAI FANG, YU-BIN CHOU, CHAU-YI |
description | Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023236980A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023236980A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023236980A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAURLtxIeo_XHDbQm1BdHmb3DaB5kGarkuRuBIt1H_wt40PXLuaYThzlsnD6IyTQs2hE-iIA0ePwJAJqRtQ5IXhKTCjbO_JgXWmcahSeD1-qyPkWLUUeS57BWhtK9l7qY0DLjvvZBXRqCey0BI6_fJ_DLGtk8V5vMxh881Vsq3JM5GF6TaEeRpP4RruQ98VeVEW5f54yHFX_kc9AaHPPoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><source>esp@cenet</source><creator>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</creator><creatorcontrib>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</creatorcontrib><description>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230727&DB=EPODOC&CC=US&NR=2023236980A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230727&DB=EPODOC&CC=US&NR=2023236980A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG, SHUEN-TAI</creatorcontrib><creatorcontrib>FANG, YU-BIN</creatorcontrib><creatorcontrib>CHOU, CHAU-YI</creatorcontrib><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><description>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAURLtxIeo_XHDbQm1BdHmb3DaB5kGarkuRuBIt1H_wt40PXLuaYThzlsnD6IyTQs2hE-iIA0ePwJAJqRtQ5IXhKTCjbO_JgXWmcahSeD1-qyPkWLUUeS57BWhtK9l7qY0DLjvvZBXRqCey0BI6_fJ_DLGtk8V5vMxh881Vsq3JM5GF6TaEeRpP4RruQ98VeVEW5f54yHFX_kc9AaHPPoc</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>WANG, SHUEN-TAI</creator><creator>FANG, YU-BIN</creator><creator>CHOU, CHAU-YI</creator><scope>EVB</scope></search><sort><creationdate>20230727</creationdate><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><author>WANG, SHUEN-TAI ; FANG, YU-BIN ; CHOU, CHAU-YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023236980A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG, SHUEN-TAI</creatorcontrib><creatorcontrib>FANG, YU-BIN</creatorcontrib><creatorcontrib>CHOU, CHAU-YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG, SHUEN-TAI</au><au>FANG, YU-BIN</au><au>CHOU, CHAU-YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING</title><date>2023-07-27</date><risdate>2023</risdate><abstract>Disclosed are an on-demand shared data caching method, a computer program, and a computer readable medium applicable for distributed deep learning computing. The method includes a step of dynamically building a distributed shared memory cache space, in which a distributed shared memory deployment and data file access management module is added to a deep learning framework to build the distributed shared memory cache space by a memory set of a multiple of computing nodes of a cluster computer; and a distributed deep learning computing step, in which the computing node overrides a Dataset API of the deep learning framework to execute the distributed deep learning computing. When reading a data file, if the data file exists in the distributed shared memory cache space, then it will be accessed directly, or else it will be obtained from an original specified directory location and stored in the distributed shared memory cache space.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023236980A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | ON-DEMAND SHARED DATA CACHING METHOD, COMPUTER PROGRAM, AND COMPUTER READABLE MEDIUM APPLICABLE FOR DISTRIBUTED DEEP LEARNING COMPUTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG,%20SHUEN-TAI&rft.date=2023-07-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023236980A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |