LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS

In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar-such as a probabilistic grammar- and applying the sce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Ming-Yu, Kar, Amlan, Barriuso, Antonio Torralba, Fidler, Sanja, Acuna Marrero, David Jesus, Prakash, Aayush
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Liu, Ming-Yu
Kar, Amlan
Barriuso, Antonio Torralba
Fidler, Sanja
Acuna Marrero, David Jesus
Prakash, Aayush
description In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar-such as a probabilistic grammar- and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023229919A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023229919A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023229919A13</originalsourceid><addsrcrecordid>eNrjZHDxcXUM8vP0c1cI8Vdwd_VzDXIMcVUIjvQL8XAN8XRWcHEMcQx2DQlWcPMPUggJcvQEq_VzDQ1y9AFSIeH-Qd7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI2MjI0tLQ0tHQmDhVACUxLQY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS</title><source>esp@cenet</source><creator>Liu, Ming-Yu ; Kar, Amlan ; Barriuso, Antonio Torralba ; Fidler, Sanja ; Acuna Marrero, David Jesus ; Prakash, Aayush</creator><creatorcontrib>Liu, Ming-Yu ; Kar, Amlan ; Barriuso, Antonio Torralba ; Fidler, Sanja ; Acuna Marrero, David Jesus ; Prakash, Aayush</creatorcontrib><description>In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar-such as a probabilistic grammar- and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230720&amp;DB=EPODOC&amp;CC=US&amp;NR=2023229919A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230720&amp;DB=EPODOC&amp;CC=US&amp;NR=2023229919A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Kar, Amlan</creatorcontrib><creatorcontrib>Barriuso, Antonio Torralba</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><title>LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS</title><description>In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar-such as a probabilistic grammar- and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHDxcXUM8vP0c1cI8Vdwd_VzDXIMcVUIjvQL8XAN8XRWcHEMcQx2DQlWcPMPUggJcvQEq_VzDQ1y9AFSIeH-Qd7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI2MjI0tLQ0tHQmDhVACUxLQY</recordid><startdate>20230720</startdate><enddate>20230720</enddate><creator>Liu, Ming-Yu</creator><creator>Kar, Amlan</creator><creator>Barriuso, Antonio Torralba</creator><creator>Fidler, Sanja</creator><creator>Acuna Marrero, David Jesus</creator><creator>Prakash, Aayush</creator><scope>EVB</scope></search><sort><creationdate>20230720</creationdate><title>LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS</title><author>Liu, Ming-Yu ; Kar, Amlan ; Barriuso, Antonio Torralba ; Fidler, Sanja ; Acuna Marrero, David Jesus ; Prakash, Aayush</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023229919A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ming-Yu</creatorcontrib><creatorcontrib>Kar, Amlan</creatorcontrib><creatorcontrib>Barriuso, Antonio Torralba</creatorcontrib><creatorcontrib>Fidler, Sanja</creatorcontrib><creatorcontrib>Acuna Marrero, David Jesus</creatorcontrib><creatorcontrib>Prakash, Aayush</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Ming-Yu</au><au>Kar, Amlan</au><au>Barriuso, Antonio Torralba</au><au>Fidler, Sanja</au><au>Acuna Marrero, David Jesus</au><au>Prakash, Aayush</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS</title><date>2023-07-20</date><risdate>2023</risdate><abstract>In various examples, a generative model is used to synthesize datasets for use in training a downstream machine learning model to perform an associated task. The synthesized datasets may be generated by sampling a scene graph from a scene grammar-such as a probabilistic grammar- and applying the scene graph to the generative model to compute updated scene graphs more representative of object attribute distributions of real-world datasets. The downstream machine learning model may be validated against a real-world validation dataset, and the performance of the model on the real-world validation dataset may be used as an additional factor in further training or fine-tuning the generative model for generating the synthesized datasets specific to the task of the downstream machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023229919A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title LEARNING TO GENERATE SYNTHETIC DATASETS FOR TRAINING NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Liu,%20Ming-Yu&rft.date=2023-07-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023229919A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true