FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION

A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHAO, Zhenfeng, ZHUANG, Qingwei
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHAO, Zhenfeng
ZHUANG, Qingwei
description A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature information of existing samples and obtain initial feature parameters and a deep convolutional network backbone of the few-shot set; the few-shot urban remote sensing information pre-trained model is a network structure including a convolutional layer, a pooling layer and a fully-connected layer, and includes five sections of convolutional network where each section includes two or three convolutional layers, and an end of each section is connected to one maximum pooling layer to reduce a size of a picture; the number of convolutional kernels inside each section is same, and when closer to the fully-connected layer, the number of convolutional kernels is larger.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023215166A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023215166A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023215166A13</originalsourceid><addsrcrecordid>eNqNi8EKgkAURd20iOofHrQWGiX3T-epA80bmHliO5EYV1GC_T9h9QGt7jlw7jaZaurT0DqBzpfI4Mk6IQjEwXADxmJDYLh23qIYx0BX8Vh90JK0TkOJgTR8HeFC6Hm9ImtAEeK13Sebabwv8fDbXXKsSao2jfNziMs83uIjvoYuZKcsz9RZFQWq_L_qDYaGNeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION</title><source>esp@cenet</source><creator>SHAO, Zhenfeng ; ZHUANG, Qingwei</creator><creatorcontrib>SHAO, Zhenfeng ; ZHUANG, Qingwei</creatorcontrib><description>A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature information of existing samples and obtain initial feature parameters and a deep convolutional network backbone of the few-shot set; the few-shot urban remote sensing information pre-trained model is a network structure including a convolutional layer, a pooling layer and a fully-connected layer, and includes five sections of convolutional network where each section includes two or three convolutional layers, and an end of each section is connected to one maximum pooling layer to reduce a size of a picture; the number of convolutional kernels inside each section is same, and when closer to the fully-connected layer, the number of convolutional kernels is larger.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230706&amp;DB=EPODOC&amp;CC=US&amp;NR=2023215166A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230706&amp;DB=EPODOC&amp;CC=US&amp;NR=2023215166A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHAO, Zhenfeng</creatorcontrib><creatorcontrib>ZHUANG, Qingwei</creatorcontrib><title>FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION</title><description>A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature information of existing samples and obtain initial feature parameters and a deep convolutional network backbone of the few-shot set; the few-shot urban remote sensing information pre-trained model is a network structure including a convolutional layer, a pooling layer and a fully-connected layer, and includes five sections of convolutional network where each section includes two or three convolutional layers, and an end of each section is connected to one maximum pooling layer to reduce a size of a picture; the number of convolutional kernels inside each section is same, and when closer to the fully-connected layer, the number of convolutional kernels is larger.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKgkAURd20iOofHrQWGiX3T-epA80bmHliO5EYV1GC_T9h9QGt7jlw7jaZaurT0DqBzpfI4Mk6IQjEwXADxmJDYLh23qIYx0BX8Vh90JK0TkOJgTR8HeFC6Hm9ImtAEeK13Sebabwv8fDbXXKsSao2jfNziMs83uIjvoYuZKcsz9RZFQWq_L_qDYaGNeg</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>SHAO, Zhenfeng</creator><creator>ZHUANG, Qingwei</creator><scope>EVB</scope></search><sort><creationdate>20230706</creationdate><title>FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION</title><author>SHAO, Zhenfeng ; ZHUANG, Qingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023215166A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHAO, Zhenfeng</creatorcontrib><creatorcontrib>ZHUANG, Qingwei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHAO, Zhenfeng</au><au>ZHUANG, Qingwei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION</title><date>2023-07-06</date><risdate>2023</risdate><abstract>A few-shot urban remote sensing image information extraction method based on meta learning and attention includes building a few-shot urban remote sensing information pre-trained model. During a pre-training stage, pre-training network learning is performed for a few-shot set to fully learn feature information of existing samples and obtain initial feature parameters and a deep convolutional network backbone of the few-shot set; the few-shot urban remote sensing information pre-trained model is a network structure including a convolutional layer, a pooling layer and a fully-connected layer, and includes five sections of convolutional network where each section includes two or three convolutional layers, and an end of each section is connected to one maximum pooling layer to reduce a size of a picture; the number of convolutional kernels inside each section is same, and when closer to the fully-connected layer, the number of convolutional kernels is larger.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023215166A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title FEW-SHOT URBAN REMOTE SENSING IMAGE INFORMATION EXTRACTION METHOD BASED ON META LEARNING AND ATTENTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHAO,%20Zhenfeng&rft.date=2023-07-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023215166A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true