DETECTING MALICIOUS QUERIES USING SYNTAX METRICS

The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MAKHLEVICH, Michael, KARPOVSKY, Andrey, ROTSTEIN, Tomer
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MAKHLEVICH, Michael
KARPOVSKY, Andrey
ROTSTEIN, Tomer
description The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023205882A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023205882A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023205882A13</originalsourceid><addsrcrecordid>eNrjZDBwcQ1xdQ7x9HNX8HX08XT29A8NVggMdQ3ydA1WCA0GiQdH-oU4Rij4uoYEeToH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjYyMDUwsLI0dDY-JUAQDqOyeK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><source>esp@cenet</source><creator>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</creator><creatorcontrib>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</creatorcontrib><description>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230629&amp;DB=EPODOC&amp;CC=US&amp;NR=2023205882A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230629&amp;DB=EPODOC&amp;CC=US&amp;NR=2023205882A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAKHLEVICH, Michael</creatorcontrib><creatorcontrib>KARPOVSKY, Andrey</creatorcontrib><creatorcontrib>ROTSTEIN, Tomer</creatorcontrib><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><description>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBwcQ1xdQ7x9HNX8HX08XT29A8NVggMdQ3ydA1WCA0GiQdH-oU4Rij4uoYEeToH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjYyMDUwsLI0dDY-JUAQDqOyeK</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>MAKHLEVICH, Michael</creator><creator>KARPOVSKY, Andrey</creator><creator>ROTSTEIN, Tomer</creator><scope>EVB</scope></search><sort><creationdate>20230629</creationdate><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><author>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023205882A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MAKHLEVICH, Michael</creatorcontrib><creatorcontrib>KARPOVSKY, Andrey</creatorcontrib><creatorcontrib>ROTSTEIN, Tomer</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAKHLEVICH, Michael</au><au>KARPOVSKY, Andrey</au><au>ROTSTEIN, Tomer</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><date>2023-06-29</date><risdate>2023</risdate><abstract>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023205882A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title DETECTING MALICIOUS QUERIES USING SYNTAX METRICS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAKHLEVICH,%20Michael&rft.date=2023-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023205882A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true