DETECTING MALICIOUS QUERIES USING SYNTAX METRICS
The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MAKHLEVICH, Michael KARPOVSKY, Andrey ROTSTEIN, Tomer |
description | The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023205882A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023205882A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023205882A13</originalsourceid><addsrcrecordid>eNrjZDBwcQ1xdQ7x9HNX8HX08XT29A8NVggMdQ3ydA1WCA0GiQdH-oU4Rij4uoYEeToH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjYyMDUwsLI0dDY-JUAQDqOyeK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><source>esp@cenet</source><creator>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</creator><creatorcontrib>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</creatorcontrib><description>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230629&DB=EPODOC&CC=US&NR=2023205882A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230629&DB=EPODOC&CC=US&NR=2023205882A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MAKHLEVICH, Michael</creatorcontrib><creatorcontrib>KARPOVSKY, Andrey</creatorcontrib><creatorcontrib>ROTSTEIN, Tomer</creatorcontrib><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><description>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBwcQ1xdQ7x9HNX8HX08XT29A8NVggMdQ3ydA1WCA0GiQdH-oU4Rij4uoYEeToH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjYyMDUwsLI0dDY-JUAQDqOyeK</recordid><startdate>20230629</startdate><enddate>20230629</enddate><creator>MAKHLEVICH, Michael</creator><creator>KARPOVSKY, Andrey</creator><creator>ROTSTEIN, Tomer</creator><scope>EVB</scope></search><sort><creationdate>20230629</creationdate><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><author>MAKHLEVICH, Michael ; KARPOVSKY, Andrey ; ROTSTEIN, Tomer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023205882A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MAKHLEVICH, Michael</creatorcontrib><creatorcontrib>KARPOVSKY, Andrey</creatorcontrib><creatorcontrib>ROTSTEIN, Tomer</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MAKHLEVICH, Michael</au><au>KARPOVSKY, Andrey</au><au>ROTSTEIN, Tomer</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETECTING MALICIOUS QUERIES USING SYNTAX METRICS</title><date>2023-06-29</date><risdate>2023</risdate><abstract>The detection and alerting on malicious queries that are directed towards a data store. The detection is done by using syntax metrics of the query. This can be done without evaluating (or at least without retaining) the unmasked query. In order to detect a potentially malicious query, syntax metric(s) of that query are accessed. The syntax metric(s) are then fed into a model that is configured to predict maliciousness of the query based on the one or more syntax metrics. The output of the model then represents a prediction of maliciousness of the query. Based on the output of the model representing the predicted maliciousness, a computing entity associated with the data store is then alerted.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023205882A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | DETECTING MALICIOUS QUERIES USING SYNTAX METRICS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MAKHLEVICH,%20Michael&rft.date=2023-06-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023205882A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |