Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene

A method for training a computer-implemented system for predicting future developments of a traffic scene is proposed, the system comprising at least a perception level for aggregating scene-specific information of an input scene, a backbone network for generating a feature set of latent features ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Janjos, Faris, Dolgov, Maxim
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Janjos, Faris
Dolgov, Maxim
description A method for training a computer-implemented system for predicting future developments of a traffic scene is proposed, the system comprising at least a perception level for aggregating scene-specific information of an input scene, a backbone network for generating a feature set of latent features based on the scene-specific information, a classifier network that evaluates a specified number of different modes for the future developments of the input scene based on the feature set, and for each mode, a prediction module for generating a prediction for the future development of the input scene. According to the disclosure, the backbone network is trained along with the classifier network by modifying the weights of the backbone network and/or the weights of the classifier network such that a deviation between the learning phase evaluation of the classifier network and a realistic evaluation of the different modes is reduced.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023169852A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023169852A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023169852A13</originalsourceid><addsrcrecordid>eNqNzL0KwjAYheEuDqLewweuFmxF0VFEcXFS5xKSkxpofki-Cs7euA3o7nSW57zj4n0BP7xaUHolhiXhFIXo2yhsXtVLJu0jcRTGGdeSIOlt6BmxNDZ0sHAM9btnGiKUkZyx7rmPIIUnOh8yTeT10BhyWhtJScJhWoy06BJm350U89PxdjiXCL5BCiIjbu7Xelmvqs1uu6731eo_9QG8FEwF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene</title><source>esp@cenet</source><creator>Janjos, Faris ; Dolgov, Maxim</creator><creatorcontrib>Janjos, Faris ; Dolgov, Maxim</creatorcontrib><description>A method for training a computer-implemented system for predicting future developments of a traffic scene is proposed, the system comprising at least a perception level for aggregating scene-specific information of an input scene, a backbone network for generating a feature set of latent features based on the scene-specific information, a classifier network that evaluates a specified number of different modes for the future developments of the input scene based on the feature set, and for each mode, a prediction module for generating a prediction for the future development of the input scene. According to the disclosure, the backbone network is trained along with the classifier network by modifying the weights of the backbone network and/or the weights of the classifier network such that a deviation between the learning phase evaluation of the classifier network and a realistic evaluation of the different modes is reduced.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230601&amp;DB=EPODOC&amp;CC=US&amp;NR=2023169852A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230601&amp;DB=EPODOC&amp;CC=US&amp;NR=2023169852A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Janjos, Faris</creatorcontrib><creatorcontrib>Dolgov, Maxim</creatorcontrib><title>Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene</title><description>A method for training a computer-implemented system for predicting future developments of a traffic scene is proposed, the system comprising at least a perception level for aggregating scene-specific information of an input scene, a backbone network for generating a feature set of latent features based on the scene-specific information, a classifier network that evaluates a specified number of different modes for the future developments of the input scene based on the feature set, and for each mode, a prediction module for generating a prediction for the future development of the input scene. According to the disclosure, the backbone network is trained along with the classifier network by modifying the weights of the backbone network and/or the weights of the classifier network such that a deviation between the learning phase evaluation of the classifier network and a realistic evaluation of the different modes is reduced.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzL0KwjAYheEuDqLewweuFmxF0VFEcXFS5xKSkxpofki-Cs7euA3o7nSW57zj4n0BP7xaUHolhiXhFIXo2yhsXtVLJu0jcRTGGdeSIOlt6BmxNDZ0sHAM9btnGiKUkZyx7rmPIIUnOh8yTeT10BhyWhtJScJhWoy06BJm350U89PxdjiXCL5BCiIjbu7Xelmvqs1uu6731eo_9QG8FEwF</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Janjos, Faris</creator><creator>Dolgov, Maxim</creator><scope>EVB</scope></search><sort><creationdate>20230601</creationdate><title>Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene</title><author>Janjos, Faris ; Dolgov, Maxim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023169852A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Janjos, Faris</creatorcontrib><creatorcontrib>Dolgov, Maxim</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Janjos, Faris</au><au>Dolgov, Maxim</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene</title><date>2023-06-01</date><risdate>2023</risdate><abstract>A method for training a computer-implemented system for predicting future developments of a traffic scene is proposed, the system comprising at least a perception level for aggregating scene-specific information of an input scene, a backbone network for generating a feature set of latent features based on the scene-specific information, a classifier network that evaluates a specified number of different modes for the future developments of the input scene based on the feature set, and for each mode, a prediction module for generating a prediction for the future development of the input scene. According to the disclosure, the backbone network is trained along with the classifier network by modifying the weights of the backbone network and/or the weights of the classifier network such that a deviation between the learning phase evaluation of the classifier network and a realistic evaluation of the different modes is reduced.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023169852A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title Method, system and program product for training a computer-implemented system for predicting future developments of a traffic scene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Janjos,%20Faris&rft.date=2023-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023169852A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true