Annotation of a Machine Learning Pipeline with Operational Semantics
A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational s...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GANTI, RAGHU KIRAN Rosenkranz, Joshua M HOANG TRONG, Tuan Minh SRIVATSA, MUDHAKAR Andrade Costa, Carlos Henrique Chu, Linsong |
description | A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023169408A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023169408A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023169408A13</originalsourceid><addsrcrecordid>eNrjZHBxzMvLL0ksyczPU8hPU0hU8E1MzsjMS1XwSU0sysvMS1cIyCxIzQGJlGeWZCj4F6QWgVUn5igEp-Ym5pVkJhfzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQzNLEwMLR0Nj4lQBAE0iM3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><source>esp@cenet</source><creator>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</creator><creatorcontrib>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</creatorcontrib><description>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230601&DB=EPODOC&CC=US&NR=2023169408A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230601&DB=EPODOC&CC=US&NR=2023169408A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GANTI, RAGHU KIRAN</creatorcontrib><creatorcontrib>Rosenkranz, Joshua M</creatorcontrib><creatorcontrib>HOANG TRONG, Tuan Minh</creatorcontrib><creatorcontrib>SRIVATSA, MUDHAKAR</creatorcontrib><creatorcontrib>Andrade Costa, Carlos Henrique</creatorcontrib><creatorcontrib>Chu, Linsong</creatorcontrib><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><description>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxzMvLL0ksyczPU8hPU0hU8E1MzsjMS1XwSU0sysvMS1cIyCxIzQGJlGeWZCj4F6QWgVUn5igEp-Ym5pVkJhfzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQzNLEwMLR0Nj4lQBAE0iM3I</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>GANTI, RAGHU KIRAN</creator><creator>Rosenkranz, Joshua M</creator><creator>HOANG TRONG, Tuan Minh</creator><creator>SRIVATSA, MUDHAKAR</creator><creator>Andrade Costa, Carlos Henrique</creator><creator>Chu, Linsong</creator><scope>EVB</scope></search><sort><creationdate>20230601</creationdate><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><author>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023169408A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GANTI, RAGHU KIRAN</creatorcontrib><creatorcontrib>Rosenkranz, Joshua M</creatorcontrib><creatorcontrib>HOANG TRONG, Tuan Minh</creatorcontrib><creatorcontrib>SRIVATSA, MUDHAKAR</creatorcontrib><creatorcontrib>Andrade Costa, Carlos Henrique</creatorcontrib><creatorcontrib>Chu, Linsong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GANTI, RAGHU KIRAN</au><au>Rosenkranz, Joshua M</au><au>HOANG TRONG, Tuan Minh</au><au>SRIVATSA, MUDHAKAR</au><au>Andrade Costa, Carlos Henrique</au><au>Chu, Linsong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><date>2023-06-01</date><risdate>2023</risdate><abstract>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023169408A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Annotation of a Machine Learning Pipeline with Operational Semantics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GANTI,%20RAGHU%20KIRAN&rft.date=2023-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023169408A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |