Annotation of a Machine Learning Pipeline with Operational Semantics

A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GANTI, RAGHU KIRAN, Rosenkranz, Joshua M, HOANG TRONG, Tuan Minh, SRIVATSA, MUDHAKAR, Andrade Costa, Carlos Henrique, Chu, Linsong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GANTI, RAGHU KIRAN
Rosenkranz, Joshua M
HOANG TRONG, Tuan Minh
SRIVATSA, MUDHAKAR
Andrade Costa, Carlos Henrique
Chu, Linsong
description A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023169408A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023169408A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023169408A13</originalsourceid><addsrcrecordid>eNrjZHBxzMvLL0ksyczPU8hPU0hU8E1MzsjMS1XwSU0sysvMS1cIyCxIzQGJlGeWZCj4F6QWgVUn5igEp-Ym5pVkJhfzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQzNLEwMLR0Nj4lQBAE0iM3I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><source>esp@cenet</source><creator>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</creator><creatorcontrib>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</creatorcontrib><description>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230601&amp;DB=EPODOC&amp;CC=US&amp;NR=2023169408A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230601&amp;DB=EPODOC&amp;CC=US&amp;NR=2023169408A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GANTI, RAGHU KIRAN</creatorcontrib><creatorcontrib>Rosenkranz, Joshua M</creatorcontrib><creatorcontrib>HOANG TRONG, Tuan Minh</creatorcontrib><creatorcontrib>SRIVATSA, MUDHAKAR</creatorcontrib><creatorcontrib>Andrade Costa, Carlos Henrique</creatorcontrib><creatorcontrib>Chu, Linsong</creatorcontrib><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><description>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHBxzMvLL0ksyczPU8hPU0hU8E1MzsjMS1XwSU0sysvMS1cIyCxIzQGJlGeWZCj4F6QWgVUn5igEp-Ym5pVkJhfzMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLE5NS81JL40GAjAyNjQzNLEwMLR0Nj4lQBAE0iM3I</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>GANTI, RAGHU KIRAN</creator><creator>Rosenkranz, Joshua M</creator><creator>HOANG TRONG, Tuan Minh</creator><creator>SRIVATSA, MUDHAKAR</creator><creator>Andrade Costa, Carlos Henrique</creator><creator>Chu, Linsong</creator><scope>EVB</scope></search><sort><creationdate>20230601</creationdate><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><author>GANTI, RAGHU KIRAN ; Rosenkranz, Joshua M ; HOANG TRONG, Tuan Minh ; SRIVATSA, MUDHAKAR ; Andrade Costa, Carlos Henrique ; Chu, Linsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023169408A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GANTI, RAGHU KIRAN</creatorcontrib><creatorcontrib>Rosenkranz, Joshua M</creatorcontrib><creatorcontrib>HOANG TRONG, Tuan Minh</creatorcontrib><creatorcontrib>SRIVATSA, MUDHAKAR</creatorcontrib><creatorcontrib>Andrade Costa, Carlos Henrique</creatorcontrib><creatorcontrib>Chu, Linsong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GANTI, RAGHU KIRAN</au><au>Rosenkranz, Joshua M</au><au>HOANG TRONG, Tuan Minh</au><au>SRIVATSA, MUDHAKAR</au><au>Andrade Costa, Carlos Henrique</au><au>Chu, Linsong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Annotation of a Machine Learning Pipeline with Operational Semantics</title><date>2023-06-01</date><risdate>2023</risdate><abstract>A system, computer program product, and method are provided for distributed data workflow semantics. A pipeline, such as a machine learning (ML) pipeline, is implemented over a data flow graph (DFG) with nodes configured to support rich semantics. The rich semantics include two or more operational semantics, and at least one lineage semantic to selectively combine features that trace lineage to a common input object. The lineage semantic is leveraged to associate training and testing data set pairs in cross validation of the trained ML models produced from parallelizing the selection of ML pipelines.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023169408A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Annotation of a Machine Learning Pipeline with Operational Semantics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GANTI,%20RAGHU%20KIRAN&rft.date=2023-06-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023169408A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true