Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead

Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cho, Hyunghoon, Hie, Brian, Leighton, Bonnie Berger
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cho, Hyunghoon
Hie, Brian
Leighton, Bonnie Berger
description Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023154630A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023154630A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023154630A13</originalsourceid><addsrcrecordid>eNqNjUsOwjAMRLthgYA7RGKN1A-wRwjEms-6Mq7bRqRx5CZF4g7cmfA5AKt5o_F4xsnzSGD0Q9tGOdEDeFJgq8iAXiMY5VqQDpANNx8fycCVBbxmq0L_boKyFCSGlvyd5aZAsNWe0Aeh2LC1biJVqmZRUQNGRu5c8N83PJC0BNU0GdVgepr9dJLM97vz9rAgxyX1DpDiRHk55WleZKvlukg3WfHf1Qu_TVC2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead</title><source>esp@cenet</source><creator>Cho, Hyunghoon ; Hie, Brian ; Leighton, Bonnie Berger</creator><creatorcontrib>Cho, Hyunghoon ; Hie, Brian ; Leighton, Bonnie Berger</creatorcontrib><description>Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230518&amp;DB=EPODOC&amp;CC=US&amp;NR=2023154630A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230518&amp;DB=EPODOC&amp;CC=US&amp;NR=2023154630A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cho, Hyunghoon</creatorcontrib><creatorcontrib>Hie, Brian</creatorcontrib><creatorcontrib>Leighton, Bonnie Berger</creatorcontrib><title>Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead</title><description>Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjUsOwjAMRLthgYA7RGKN1A-wRwjEms-6Mq7bRqRx5CZF4g7cmfA5AKt5o_F4xsnzSGD0Q9tGOdEDeFJgq8iAXiMY5VqQDpANNx8fycCVBbxmq0L_boKyFCSGlvyd5aZAsNWe0Aeh2LC1biJVqmZRUQNGRu5c8N83PJC0BNU0GdVgepr9dJLM97vz9rAgxyX1DpDiRHk55WleZKvlukg3WfHf1Qu_TVC2</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>Cho, Hyunghoon</creator><creator>Hie, Brian</creator><creator>Leighton, Bonnie Berger</creator><scope>EVB</scope></search><sort><creationdate>20230518</creationdate><title>Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead</title><author>Cho, Hyunghoon ; Hie, Brian ; Leighton, Bonnie Berger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023154630A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyunghoon</creatorcontrib><creatorcontrib>Hie, Brian</creatorcontrib><creatorcontrib>Leighton, Bonnie Berger</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cho, Hyunghoon</au><au>Hie, Brian</au><au>Leighton, Bonnie Berger</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead</title><date>2023-05-18</date><risdate>2023</risdate><abstract>Computationally-efficient techniques facilitate secure pharmacological collaboration with respect to private drug target interaction (DTI) data. In one embodiment, a method begins by receiving, via a secret sharing protocol, observed DTI data from individual participating entities. A secure computation then is executed against the secretly-shared data to generate a pooled DTI dataset. For increased computational efficiency, at least a part of the computation is executed over dimensionality-reduced data. The resulting pooled DTI dataset is then used to train a neural network model. The model is then used to provide one or more DTI predictions that are then returned to the participating entities (or other interested parties).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023154630A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title Realizing private and practical pharmacological collaboration using a neural network architecture configured for reduced computation overhead
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cho,%20Hyunghoon&rft.date=2023-05-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023154630A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true