MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS

Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YADAV, Raghvendra Kumar, BHATTACHARJEE, Biswajit, NIGAM, Apoorva, WOLF, Anders, G, Vaishnavi V, KYANAM, Subhadradevi
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YADAV, Raghvendra Kumar
BHATTACHARJEE, Biswajit
NIGAM, Apoorva
WOLF, Anders
G, Vaishnavi V
KYANAM, Subhadradevi
description Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal-utility classification for the predictive entity may be determined based at least in part on outputs from a temporal score generation machine learning model and a utility score generation machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023153681A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023153681A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023153681A13</originalsourceid><addsrcrecordid>eNqNirsKwjAUQLs4iPoPAeeCaVC6xvTGXEhuNI-hUykSJ9FC_X8U8QOcDudwllV2UhkkYBZkIKQTS6AM4SVDZNoHZvpjwO5T3dkHaeuc0GLqmbIyRtSoZEJPrIMEwSF9La6rxW28z2Xz46raakjK1GV6DmWexmt5lNeQY7NrBN-LQ8slF_9db2GkMew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS</title><source>esp@cenet</source><creator>YADAV, Raghvendra Kumar ; BHATTACHARJEE, Biswajit ; NIGAM, Apoorva ; WOLF, Anders ; G, Vaishnavi V ; KYANAM, Subhadradevi</creator><creatorcontrib>YADAV, Raghvendra Kumar ; BHATTACHARJEE, Biswajit ; NIGAM, Apoorva ; WOLF, Anders ; G, Vaishnavi V ; KYANAM, Subhadradevi</creatorcontrib><description>Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal-utility classification for the predictive entity may be determined based at least in part on outputs from a temporal score generation machine learning model and a utility score generation machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230518&amp;DB=EPODOC&amp;CC=US&amp;NR=2023153681A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230518&amp;DB=EPODOC&amp;CC=US&amp;NR=2023153681A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YADAV, Raghvendra Kumar</creatorcontrib><creatorcontrib>BHATTACHARJEE, Biswajit</creatorcontrib><creatorcontrib>NIGAM, Apoorva</creatorcontrib><creatorcontrib>WOLF, Anders</creatorcontrib><creatorcontrib>G, Vaishnavi V</creatorcontrib><creatorcontrib>KYANAM, Subhadradevi</creatorcontrib><title>MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS</title><description>Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal-utility classification for the predictive entity may be determined based at least in part on outputs from a temporal score generation machine learning model and a utility score generation machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirsKwjAUQLs4iPoPAeeCaVC6xvTGXEhuNI-hUykSJ9FC_X8U8QOcDudwllV2UhkkYBZkIKQTS6AM4SVDZNoHZvpjwO5T3dkHaeuc0GLqmbIyRtSoZEJPrIMEwSF9La6rxW28z2Xz46raakjK1GV6DmWexmt5lNeQY7NrBN-LQ8slF_9db2GkMew</recordid><startdate>20230518</startdate><enddate>20230518</enddate><creator>YADAV, Raghvendra Kumar</creator><creator>BHATTACHARJEE, Biswajit</creator><creator>NIGAM, Apoorva</creator><creator>WOLF, Anders</creator><creator>G, Vaishnavi V</creator><creator>KYANAM, Subhadradevi</creator><scope>EVB</scope></search><sort><creationdate>20230518</creationdate><title>MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS</title><author>YADAV, Raghvendra Kumar ; BHATTACHARJEE, Biswajit ; NIGAM, Apoorva ; WOLF, Anders ; G, Vaishnavi V ; KYANAM, Subhadradevi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023153681A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YADAV, Raghvendra Kumar</creatorcontrib><creatorcontrib>BHATTACHARJEE, Biswajit</creatorcontrib><creatorcontrib>NIGAM, Apoorva</creatorcontrib><creatorcontrib>WOLF, Anders</creatorcontrib><creatorcontrib>G, Vaishnavi V</creatorcontrib><creatorcontrib>KYANAM, Subhadradevi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YADAV, Raghvendra Kumar</au><au>BHATTACHARJEE, Biswajit</au><au>NIGAM, Apoorva</au><au>WOLF, Anders</au><au>G, Vaishnavi V</au><au>KYANAM, Subhadradevi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS</title><date>2023-05-18</date><risdate>2023</risdate><abstract>Various embodiments of the present invention provide methods, apparatus, systems, computing devices, computing entities, and/or the like for performing predictive data analysis operations by dynamically determining a hybrid temporal-utility classification for a predictive entity. The hybrid temporal-utility classification for the predictive entity may be determined based at least in part on outputs from a temporal score generation machine learning model and a utility score generation machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023153681A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MACHINE LEARNING TECHNIQUES FOR HYBRID TEMPORAL-UTILITY CLASSIFICATION DETERMINATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YADAV,%20Raghvendra%20Kumar&rft.date=2023-05-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023153681A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true