One-to-Many Automatic Content Generation

Techniques are disclosed for automatically generating new content using a trained 1-to-N generative adversarial network (GAN) model. In disclosed techniques, a computer system receives, from a computing device, a request for newly-generated content, where the request includes current content. The co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Woodward, David James, Ross, Alan Martin, Jain, Aashish, Lundin, Jessica, Rohde, Sönke, Sollami, Michael, Lonsdorf, Brian J, Schoppe, Owen Winne
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Woodward, David James
Ross, Alan Martin
Jain, Aashish
Lundin, Jessica
Rohde, Sönke
Sollami, Michael
Lonsdorf, Brian J
Schoppe, Owen Winne
description Techniques are disclosed for automatically generating new content using a trained 1-to-N generative adversarial network (GAN) model. In disclosed techniques, a computer system receives, from a computing device, a request for newly-generated content, where the request includes current content. The computer system automatically generates, using the trained 1-to-N GAN model, N different versions of new content, where a given version of new content is automatically generated based on the current content and one of N different style codes, where the value of N is at least two. After generating the N different versions of new content, the computer system transmits them to the computing device. The disclosed techniques may advantageously automate a content generation process, thereby saving time and computing resources via execution of the 1-to-N GAN machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023129431A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023129431A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023129431A13</originalsourceid><addsrcrecordid>eNrjZNDwz0vVLcnX9U3Mq1RwLC3Jz00syUxWcM7PK0nNK1FwT81LLQKK5OfxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLEZKDSkvjQYCMDI2NDI0sTY0NHQ2PiVAEAQqko2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>One-to-Many Automatic Content Generation</title><source>esp@cenet</source><creator>Woodward, David James ; Ross, Alan Martin ; Jain, Aashish ; Lundin, Jessica ; Rohde, Sönke ; Sollami, Michael ; Lonsdorf, Brian J ; Schoppe, Owen Winne</creator><creatorcontrib>Woodward, David James ; Ross, Alan Martin ; Jain, Aashish ; Lundin, Jessica ; Rohde, Sönke ; Sollami, Michael ; Lonsdorf, Brian J ; Schoppe, Owen Winne</creatorcontrib><description>Techniques are disclosed for automatically generating new content using a trained 1-to-N generative adversarial network (GAN) model. In disclosed techniques, a computer system receives, from a computing device, a request for newly-generated content, where the request includes current content. The computer system automatically generates, using the trained 1-to-N GAN model, N different versions of new content, where a given version of new content is automatically generated based on the current content and one of N different style codes, where the value of N is at least two. After generating the N different versions of new content, the computer system transmits them to the computing device. The disclosed techniques may advantageously automate a content generation process, thereby saving time and computing resources via execution of the 1-to-N GAN machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230427&amp;DB=EPODOC&amp;CC=US&amp;NR=2023129431A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230427&amp;DB=EPODOC&amp;CC=US&amp;NR=2023129431A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Woodward, David James</creatorcontrib><creatorcontrib>Ross, Alan Martin</creatorcontrib><creatorcontrib>Jain, Aashish</creatorcontrib><creatorcontrib>Lundin, Jessica</creatorcontrib><creatorcontrib>Rohde, Sönke</creatorcontrib><creatorcontrib>Sollami, Michael</creatorcontrib><creatorcontrib>Lonsdorf, Brian J</creatorcontrib><creatorcontrib>Schoppe, Owen Winne</creatorcontrib><title>One-to-Many Automatic Content Generation</title><description>Techniques are disclosed for automatically generating new content using a trained 1-to-N generative adversarial network (GAN) model. In disclosed techniques, a computer system receives, from a computing device, a request for newly-generated content, where the request includes current content. The computer system automatically generates, using the trained 1-to-N GAN model, N different versions of new content, where a given version of new content is automatically generated based on the current content and one of N different style codes, where the value of N is at least two. After generating the N different versions of new content, the computer system transmits them to the computing device. The disclosed techniques may advantageously automate a content generation process, thereby saving time and computing resources via execution of the 1-to-N GAN machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDwz0vVLcnX9U3Mq1RwLC3Jz00syUxWcM7PK0nNK1FwT81LLQKK5OfxMLCmJeYUp_JCaW4GZTfXEGcP3dSC_PjU4oLEZKDSkvjQYCMDI2NDI0sTY0NHQ2PiVAEAQqko2w</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>Woodward, David James</creator><creator>Ross, Alan Martin</creator><creator>Jain, Aashish</creator><creator>Lundin, Jessica</creator><creator>Rohde, Sönke</creator><creator>Sollami, Michael</creator><creator>Lonsdorf, Brian J</creator><creator>Schoppe, Owen Winne</creator><scope>EVB</scope></search><sort><creationdate>20230427</creationdate><title>One-to-Many Automatic Content Generation</title><author>Woodward, David James ; Ross, Alan Martin ; Jain, Aashish ; Lundin, Jessica ; Rohde, Sönke ; Sollami, Michael ; Lonsdorf, Brian J ; Schoppe, Owen Winne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023129431A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Woodward, David James</creatorcontrib><creatorcontrib>Ross, Alan Martin</creatorcontrib><creatorcontrib>Jain, Aashish</creatorcontrib><creatorcontrib>Lundin, Jessica</creatorcontrib><creatorcontrib>Rohde, Sönke</creatorcontrib><creatorcontrib>Sollami, Michael</creatorcontrib><creatorcontrib>Lonsdorf, Brian J</creatorcontrib><creatorcontrib>Schoppe, Owen Winne</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Woodward, David James</au><au>Ross, Alan Martin</au><au>Jain, Aashish</au><au>Lundin, Jessica</au><au>Rohde, Sönke</au><au>Sollami, Michael</au><au>Lonsdorf, Brian J</au><au>Schoppe, Owen Winne</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>One-to-Many Automatic Content Generation</title><date>2023-04-27</date><risdate>2023</risdate><abstract>Techniques are disclosed for automatically generating new content using a trained 1-to-N generative adversarial network (GAN) model. In disclosed techniques, a computer system receives, from a computing device, a request for newly-generated content, where the request includes current content. The computer system automatically generates, using the trained 1-to-N GAN model, N different versions of new content, where a given version of new content is automatically generated based on the current content and one of N different style codes, where the value of N is at least two. After generating the N different versions of new content, the computer system transmits them to the computing device. The disclosed techniques may advantageously automate a content generation process, thereby saving time and computing resources via execution of the 1-to-N GAN machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023129431A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title One-to-Many Automatic Content Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A07%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Woodward,%20David%20James&rft.date=2023-04-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023129431A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true