METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS

A method includes, for each feature, performing an anomaly detection process. The anomaly detection process includes selecting, from a plurality of historical data points of the feature, a set of historical data points. Using a machine learning module, a set of scores, each corresponding to one hist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GALA, Vishal, ELAGAMY, Ahmed, KUMAR, Manoj, ELSAKHAWY, Mahmoud, SHARMA, Harimohan
Format: Patent
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GALA, Vishal
ELAGAMY, Ahmed
KUMAR, Manoj
ELSAKHAWY, Mahmoud
SHARMA, Harimohan
description A method includes, for each feature, performing an anomaly detection process. The anomaly detection process includes selecting, from a plurality of historical data points of the feature, a set of historical data points. Using a machine learning module, a set of scores, each corresponding to one historical data point, is selected. An anomaly threshold is determined based on the set of scores, and compared with a score corresponding to a current data point of the feature to determine whether the current data point is anomalous or not. When the current data point is anomalous, the anomaly detection process includes identifying the feature as an anomalous feature, and including the anomalous feature and the current data point in an anomaly detection report.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023126260A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023126260A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023126260A13</originalsourceid><addsrcrecordid>eNrjZIj0dQ3x8HfRUXBxDfN0dlVw9HNRcPb3DQgNcQ1SCAjydw9y9AXRLqHOIQpu_kFABf6-jj6RQPUhrs4hnv5-YC1B_v4hCs6OocEgE4DSwZ7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI2NDIzMjMwNHQmDhVAMwTMj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><source>esp@cenet</source><creator>GALA, Vishal ; ELAGAMY, Ahmed ; KUMAR, Manoj ; ELSAKHAWY, Mahmoud ; SHARMA, Harimohan</creator><creatorcontrib>GALA, Vishal ; ELAGAMY, Ahmed ; KUMAR, Manoj ; ELSAKHAWY, Mahmoud ; SHARMA, Harimohan</creatorcontrib><description>A method includes, for each feature, performing an anomaly detection process. The anomaly detection process includes selecting, from a plurality of historical data points of the feature, a set of historical data points. Using a machine learning module, a set of scores, each corresponding to one historical data point, is selected. An anomaly threshold is determined based on the set of scores, and compared with a score corresponding to a current data point of the feature to determine whether the current data point is anomalous or not. When the current data point is anomalous, the anomaly detection process includes identifying the feature as an anomalous feature, and including the anomalous feature and the current data point in an anomaly detection report.</description><language>eng</language><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230427&amp;DB=EPODOC&amp;CC=US&amp;NR=2023126260A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230427&amp;DB=EPODOC&amp;CC=US&amp;NR=2023126260A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GALA, Vishal</creatorcontrib><creatorcontrib>ELAGAMY, Ahmed</creatorcontrib><creatorcontrib>KUMAR, Manoj</creatorcontrib><creatorcontrib>ELSAKHAWY, Mahmoud</creatorcontrib><creatorcontrib>SHARMA, Harimohan</creatorcontrib><title>METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><description>A method includes, for each feature, performing an anomaly detection process. The anomaly detection process includes selecting, from a plurality of historical data points of the feature, a set of historical data points. Using a machine learning module, a set of scores, each corresponding to one historical data point, is selected. An anomaly threshold is determined based on the set of scores, and compared with a score corresponding to a current data point of the feature to determine whether the current data point is anomalous or not. When the current data point is anomalous, the anomaly detection process includes identifying the feature as an anomalous feature, and including the anomalous feature and the current data point in an anomaly detection report.</description><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIj0dQ3x8HfRUXBxDfN0dlVw9HNRcPb3DQgNcQ1SCAjydw9y9AXRLqHOIQpu_kFABf6-jj6RQPUhrs4hnv5-YC1B_v4hCs6OocEgE4DSwZ7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDI2NDIzMjMwNHQmDhVAMwTMj8</recordid><startdate>20230427</startdate><enddate>20230427</enddate><creator>GALA, Vishal</creator><creator>ELAGAMY, Ahmed</creator><creator>KUMAR, Manoj</creator><creator>ELSAKHAWY, Mahmoud</creator><creator>SHARMA, Harimohan</creator><scope>EVB</scope></search><sort><creationdate>20230427</creationdate><title>METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><author>GALA, Vishal ; ELAGAMY, Ahmed ; KUMAR, Manoj ; ELSAKHAWY, Mahmoud ; SHARMA, Harimohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023126260A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>GALA, Vishal</creatorcontrib><creatorcontrib>ELAGAMY, Ahmed</creatorcontrib><creatorcontrib>KUMAR, Manoj</creatorcontrib><creatorcontrib>ELSAKHAWY, Mahmoud</creatorcontrib><creatorcontrib>SHARMA, Harimohan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GALA, Vishal</au><au>ELAGAMY, Ahmed</au><au>KUMAR, Manoj</au><au>ELSAKHAWY, Mahmoud</au><au>SHARMA, Harimohan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS</title><date>2023-04-27</date><risdate>2023</risdate><abstract>A method includes, for each feature, performing an anomaly detection process. The anomaly detection process includes selecting, from a plurality of historical data points of the feature, a set of historical data points. Using a machine learning module, a set of scores, each corresponding to one historical data point, is selected. An anomaly threshold is determined based on the set of scores, and compared with a score corresponding to a current data point of the feature to determine whether the current data point is anomalous or not. When the current data point is anomalous, the anomaly detection process includes identifying the feature as an anomalous feature, and including the anomalous feature and the current data point in an anomaly detection report.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023126260A1
source esp@cenet
title METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR ANOMALY DETECTION AND ROOT CAUSE ANALYSIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GALA,%20Vishal&rft.date=2023-04-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023126260A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true