ENRICHMENT PIPELINE FOR MACHINE LEARNING
Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optim...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gholston, Thaddeus Miguel, Amanda Martin, Winn Robinson, Jason |
description | Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023120206A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023120206A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023120206A13</originalsourceid><addsrcrecordid>eNrjZNBw9QvydPbwdfULUQjwDHD18fRzVXDzD1LwdXT2ALF9XB2D_Dz93HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbEhkDAwczQ0Jk4VAI8qJNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><source>esp@cenet</source><creator>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</creator><creatorcontrib>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</creatorcontrib><description>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230420&DB=EPODOC&CC=US&NR=2023120206A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230420&DB=EPODOC&CC=US&NR=2023120206A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gholston, Thaddeus</creatorcontrib><creatorcontrib>Miguel, Amanda</creatorcontrib><creatorcontrib>Martin, Winn</creatorcontrib><creatorcontrib>Robinson, Jason</creatorcontrib><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><description>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBw9QvydPbwdfULUQjwDHD18fRzVXDzD1LwdXT2ALF9XB2D_Dz93HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbEhkDAwczQ0Jk4VAI8qJNY</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Gholston, Thaddeus</creator><creator>Miguel, Amanda</creator><creator>Martin, Winn</creator><creator>Robinson, Jason</creator><scope>EVB</scope></search><sort><creationdate>20230420</creationdate><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><author>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023120206A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Gholston, Thaddeus</creatorcontrib><creatorcontrib>Miguel, Amanda</creatorcontrib><creatorcontrib>Martin, Winn</creatorcontrib><creatorcontrib>Robinson, Jason</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gholston, Thaddeus</au><au>Miguel, Amanda</au><au>Martin, Winn</au><au>Robinson, Jason</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><date>2023-04-20</date><risdate>2023</risdate><abstract>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023120206A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | ENRICHMENT PIPELINE FOR MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gholston,%20Thaddeus&rft.date=2023-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023120206A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |