ENRICHMENT PIPELINE FOR MACHINE LEARNING

Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gholston, Thaddeus, Miguel, Amanda, Martin, Winn, Robinson, Jason
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gholston, Thaddeus
Miguel, Amanda
Martin, Winn
Robinson, Jason
description Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023120206A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023120206A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023120206A13</originalsourceid><addsrcrecordid>eNrjZNBw9QvydPbwdfULUQjwDHD18fRzVXDzD1LwdXT2ALF9XB2D_Dz93HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbEhkDAwczQ0Jk4VAI8qJNY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><source>esp@cenet</source><creator>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</creator><creatorcontrib>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</creatorcontrib><description>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230420&amp;DB=EPODOC&amp;CC=US&amp;NR=2023120206A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230420&amp;DB=EPODOC&amp;CC=US&amp;NR=2023120206A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gholston, Thaddeus</creatorcontrib><creatorcontrib>Miguel, Amanda</creatorcontrib><creatorcontrib>Martin, Winn</creatorcontrib><creatorcontrib>Robinson, Jason</creatorcontrib><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><description>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBw9QvydPbwdfULUQjwDHD18fRzVXDzD1LwdXT2ALF9XB2D_Dz93HkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbEhkDAwczQ0Jk4VAI8qJNY</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Gholston, Thaddeus</creator><creator>Miguel, Amanda</creator><creator>Martin, Winn</creator><creator>Robinson, Jason</creator><scope>EVB</scope></search><sort><creationdate>20230420</creationdate><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><author>Gholston, Thaddeus ; Miguel, Amanda ; Martin, Winn ; Robinson, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023120206A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Gholston, Thaddeus</creatorcontrib><creatorcontrib>Miguel, Amanda</creatorcontrib><creatorcontrib>Martin, Winn</creatorcontrib><creatorcontrib>Robinson, Jason</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gholston, Thaddeus</au><au>Miguel, Amanda</au><au>Martin, Winn</au><au>Robinson, Jason</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ENRICHMENT PIPELINE FOR MACHINE LEARNING</title><date>2023-04-20</date><risdate>2023</risdate><abstract>Provided are systems and methods for recommending job opportunities via a machine learning engine which is coupled to an enrichment pipeline. The enrichment pipeline can add skills information and other beneficial data to enrich a job profile of a user and use the enriched record to predict an optimal job opportunity or set of opportunities. In one example, the method includes receiving a description of employment data, identifying a unique identifier of a job profile based on the description of the employment data, querying a database with the unique identifier to retrieve a list of skills from the database and that are mapped to the unique identifier, transforming the list of skills from into a skills vector, determining one or more optimal job opportunities via execution of a ML model on the skills vector, and outputting information about the optimal job opportunities via a user interface.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023120206A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title ENRICHMENT PIPELINE FOR MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gholston,%20Thaddeus&rft.date=2023-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023120206A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true