SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS

Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MORGAS, Tomasz, PAYSAN, Pascal, HAAS, Benjamin M, GENGHI, Angelo
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MORGAS, Tomasz
PAYSAN, Pascal
HAAS, Benjamin M
GENGHI, Angelo
description Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023118094A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023118094A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023118094A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0LQOOh7NtQ00ieQugziUInESLdT3R1AfwOmHn2-pLnxmIceA3oAj6YJhaEKEE1MyAazDlsCgIGBqHXlBscF_iES03voWHNad9QQ9YfyOYKjntVrcxvucN7-u1LYhqbtdnp5Dnqfxmh_5NSQui7LS-lAc96ir_9QbP7sy3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><source>esp@cenet</source><creator>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</creator><creatorcontrib>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</creatorcontrib><description>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230420&amp;DB=EPODOC&amp;CC=US&amp;NR=2023118094A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230420&amp;DB=EPODOC&amp;CC=US&amp;NR=2023118094A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MORGAS, Tomasz</creatorcontrib><creatorcontrib>PAYSAN, Pascal</creatorcontrib><creatorcontrib>HAAS, Benjamin M</creatorcontrib><creatorcontrib>GENGHI, Angelo</creatorcontrib><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><description>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0LQOOh7NtQ00ieQugziUInESLdT3R1AfwOmHn2-pLnxmIceA3oAj6YJhaEKEE1MyAazDlsCgIGBqHXlBscF_iES03voWHNad9QQ9YfyOYKjntVrcxvucN7-u1LYhqbtdnp5Dnqfxmh_5NSQui7LS-lAc96ir_9QbP7sy3Q</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>MORGAS, Tomasz</creator><creator>PAYSAN, Pascal</creator><creator>HAAS, Benjamin M</creator><creator>GENGHI, Angelo</creator><scope>EVB</scope></search><sort><creationdate>20230420</creationdate><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><author>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023118094A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MORGAS, Tomasz</creatorcontrib><creatorcontrib>PAYSAN, Pascal</creatorcontrib><creatorcontrib>HAAS, Benjamin M</creatorcontrib><creatorcontrib>GENGHI, Angelo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MORGAS, Tomasz</au><au>PAYSAN, Pascal</au><au>HAAS, Benjamin M</au><au>GENGHI, Angelo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><date>2023-04-20</date><risdate>2023</risdate><abstract>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023118094A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MORGAS,%20Tomasz&rft.date=2023-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023118094A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true