SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS
Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MORGAS, Tomasz PAYSAN, Pascal HAAS, Benjamin M GENGHI, Angelo |
description | Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023118094A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023118094A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023118094A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4Gz0LQOOh7NtQ00ieQugziUInESLdT3R1AfwOmHn2-pLnxmIceA3oAj6YJhaEKEE1MyAazDlsCgIGBqHXlBscF_iES03voWHNad9QQ9YfyOYKjntVrcxvucN7-u1LYhqbtdnp5Dnqfxmh_5NSQui7LS-lAc96ir_9QbP7sy3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><source>esp@cenet</source><creator>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</creator><creatorcontrib>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</creatorcontrib><description>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230420&DB=EPODOC&CC=US&NR=2023118094A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230420&DB=EPODOC&CC=US&NR=2023118094A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MORGAS, Tomasz</creatorcontrib><creatorcontrib>PAYSAN, Pascal</creatorcontrib><creatorcontrib>HAAS, Benjamin M</creatorcontrib><creatorcontrib>GENGHI, Angelo</creatorcontrib><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><description>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4Gz0LQOOh7NtQ00ieQugziUInESLdT3R1AfwOmHn2-pLnxmIceA3oAj6YJhaEKEE1MyAazDlsCgIGBqHXlBscF_iES03voWHNad9QQ9YfyOYKjntVrcxvucN7-u1LYhqbtdnp5Dnqfxmh_5NSQui7LS-lAc96ir_9QbP7sy3Q</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>MORGAS, Tomasz</creator><creator>PAYSAN, Pascal</creator><creator>HAAS, Benjamin M</creator><creator>GENGHI, Angelo</creator><scope>EVB</scope></search><sort><creationdate>20230420</creationdate><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><author>MORGAS, Tomasz ; PAYSAN, Pascal ; HAAS, Benjamin M ; GENGHI, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023118094A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MORGAS, Tomasz</creatorcontrib><creatorcontrib>PAYSAN, Pascal</creatorcontrib><creatorcontrib>HAAS, Benjamin M</creatorcontrib><creatorcontrib>GENGHI, Angelo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MORGAS, Tomasz</au><au>PAYSAN, Pascal</au><au>HAAS, Benjamin M</au><au>GENGHI, Angelo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS</title><date>2023-04-20</date><risdate>2023</risdate><abstract>Systems and methods for augmenting a training data set with annotated pseudo images for training machine learning models. The pseudo images are generated from corresponding images of the training data set and provide a realistic model of the interaction of image generating signals with the patient, while also providing a realistic patient model. The pseudo images are of a target imaging modality, which is different than the imaging modality of the training data set, and are generated using algorithms that account for artifacts of the target imaging modality. The pseudo images may include therein the contours and/or features of the anatomical structures contained in corresponding medical images of the training data set. The trained models can be used to generate contours in medical images of a patient of the target imaging modality or to predict an anatomical condition that may be indicative of a disease.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023118094A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | SYSTEMS AND METHODS FOR PSEUDO IMAGE DATA AUGMENTATION FOR TRAINING MACHINE LEARNING MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MORGAS,%20Tomasz&rft.date=2023-04-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023118094A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |