AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS
Methods are described for automatically identifying perception weaknesses for training data to be used in improving the performance of perception systems. Deficiencies in simulated data are also identified. The methods, which can be incorporated into a system or into instructions placed on storage m...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DOONAN, WESLEY MYERS, EBEN ISAAC OSYK, ELIZABETH ANN KOOPMAN, JR., PHILIP J |
description | Methods are described for automatically identifying perception weaknesses for training data to be used in improving the performance of perception systems. Deficiencies in simulated data are also identified. The methods, which can be incorporated into a system or into instructions placed on storage media, include comparing perception system results between baseline results and results with augmented inputs and identifying perception weaknesses responsive to that comparison. The perception system is retrained using the relabeled data and is improved thereby. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023084761A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023084761A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023084761A13</originalsourceid><addsrcrecordid>eNrjZPB2DA3x93UMcXVR8HRx9QvxdPN0dgzx9PdT8HdTCAly9PTz9HNXcHEMcVRwdvRz8QSyXIMV3PyDFAJcg5xdA8BKgyODQ1x9g3kYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbGBhYm5maGjoTFxqgBVqi7J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS</title><source>esp@cenet</source><creator>DOONAN, WESLEY ; MYERS, EBEN ISAAC ; OSYK, ELIZABETH ANN ; KOOPMAN, JR., PHILIP J</creator><creatorcontrib>DOONAN, WESLEY ; MYERS, EBEN ISAAC ; OSYK, ELIZABETH ANN ; KOOPMAN, JR., PHILIP J</creatorcontrib><description>Methods are described for automatically identifying perception weaknesses for training data to be used in improving the performance of perception systems. Deficiencies in simulated data are also identified. The methods, which can be incorporated into a system or into instructions placed on storage media, include comparing perception system results between baseline results and results with augmented inputs and identifying perception weaknesses responsive to that comparison. The perception system is retrained using the relabeled data and is improved thereby.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230316&DB=EPODOC&CC=US&NR=2023084761A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20230316&DB=EPODOC&CC=US&NR=2023084761A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DOONAN, WESLEY</creatorcontrib><creatorcontrib>MYERS, EBEN ISAAC</creatorcontrib><creatorcontrib>OSYK, ELIZABETH ANN</creatorcontrib><creatorcontrib>KOOPMAN, JR., PHILIP J</creatorcontrib><title>AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS</title><description>Methods are described for automatically identifying perception weaknesses for training data to be used in improving the performance of perception systems. Deficiencies in simulated data are also identified. The methods, which can be incorporated into a system or into instructions placed on storage media, include comparing perception system results between baseline results and results with augmented inputs and identifying perception weaknesses responsive to that comparison. The perception system is retrained using the relabeled data and is improved thereby.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB2DA3x93UMcXVR8HRx9QvxdPN0dgzx9PdT8HdTCAly9PTz9HNXcHEMcVRwdvRz8QSyXIMV3PyDFAJcg5xdA8BKgyODQ1x9g3kYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBkbGBhYm5maGjoTFxqgBVqi7J</recordid><startdate>20230316</startdate><enddate>20230316</enddate><creator>DOONAN, WESLEY</creator><creator>MYERS, EBEN ISAAC</creator><creator>OSYK, ELIZABETH ANN</creator><creator>KOOPMAN, JR., PHILIP J</creator><scope>EVB</scope></search><sort><creationdate>20230316</creationdate><title>AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS</title><author>DOONAN, WESLEY ; MYERS, EBEN ISAAC ; OSYK, ELIZABETH ANN ; KOOPMAN, JR., PHILIP J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023084761A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DOONAN, WESLEY</creatorcontrib><creatorcontrib>MYERS, EBEN ISAAC</creatorcontrib><creatorcontrib>OSYK, ELIZABETH ANN</creatorcontrib><creatorcontrib>KOOPMAN, JR., PHILIP J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DOONAN, WESLEY</au><au>MYERS, EBEN ISAAC</au><au>OSYK, ELIZABETH ANN</au><au>KOOPMAN, JR., PHILIP J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS</title><date>2023-03-16</date><risdate>2023</risdate><abstract>Methods are described for automatically identifying perception weaknesses for training data to be used in improving the performance of perception systems. Deficiencies in simulated data are also identified. The methods, which can be incorporated into a system or into instructions placed on storage media, include comparing perception system results between baseline results and results with augmented inputs and identifying perception weaknesses responsive to that comparison. The perception system is retrained using the relabeled data and is improved thereby.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2023084761A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | AUTOMATED IDENTIFICATION OF TRAINING DATA CANDIDATES FOR PERCEPTION SYSTEMS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DOONAN,%20WESLEY&rft.date=2023-03-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023084761A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |