Training a machine learning model to determine a predicted time distribution related to electronic communications

Techniques for training a machine learning model to determine a predicted time distribution related to electronic communications are discussed herein. The machine learning model is trained based at least in part on time to open data indicative of respective time to open terms that begin at respectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhao, Tong, Tsai, Ming-Chi, Roy Chowdhury, Amber
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Zhao, Tong
Tsai, Ming-Chi
Roy Chowdhury, Amber
description Techniques for training a machine learning model to determine a predicted time distribution related to electronic communications are discussed herein. The machine learning model is trained based at least in part on time to open data indicative of respective time to open terms that begin at respective transmission times for electronic communications and end at respective electronic communication access event times. Additionally, based at least in part on the predicted time distribution determined by the machine learning model, respective access scores for an electronic communication being accessed via the user device at the respective times are determined to provide a new electronic communication for rendering via an electronic interface of a user device.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023025641A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023025641A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023025641A13</originalsourceid><addsrcrecordid>eNqNirsKwkAQRdNYiPoPA9ZCHmovotgb6zDuXnVgH3F38v-a4AdY3cM9Z16828QSJDyJybN5SQA5cJouHy0caSQLRfKjY-oTrBiFJRUPspI1yX1QiYESHE8mEhyMphjEkIneD1_gscnLYvZgl7H67aJYn0_t8bJBHzvkng0CtLtd67Juynq331aHqvmv-gDaC0Uq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Training a machine learning model to determine a predicted time distribution related to electronic communications</title><source>esp@cenet</source><creator>Zhao, Tong ; Tsai, Ming-Chi ; Roy Chowdhury, Amber</creator><creatorcontrib>Zhao, Tong ; Tsai, Ming-Chi ; Roy Chowdhury, Amber</creatorcontrib><description>Techniques for training a machine learning model to determine a predicted time distribution related to electronic communications are discussed herein. The machine learning model is trained based at least in part on time to open data indicative of respective time to open terms that begin at respective transmission times for electronic communications and end at respective electronic communication access event times. Additionally, based at least in part on the predicted time distribution determined by the machine learning model, respective access scores for an electronic communication being accessed via the user device at the respective times are determined to provide a new electronic communication for rendering via an electronic interface of a user device.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230126&amp;DB=EPODOC&amp;CC=US&amp;NR=2023025641A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230126&amp;DB=EPODOC&amp;CC=US&amp;NR=2023025641A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zhao, Tong</creatorcontrib><creatorcontrib>Tsai, Ming-Chi</creatorcontrib><creatorcontrib>Roy Chowdhury, Amber</creatorcontrib><title>Training a machine learning model to determine a predicted time distribution related to electronic communications</title><description>Techniques for training a machine learning model to determine a predicted time distribution related to electronic communications are discussed herein. The machine learning model is trained based at least in part on time to open data indicative of respective time to open terms that begin at respective transmission times for electronic communications and end at respective electronic communication access event times. Additionally, based at least in part on the predicted time distribution determined by the machine learning model, respective access scores for an electronic communication being accessed via the user device at the respective times are determined to provide a new electronic communication for rendering via an electronic interface of a user device.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirsKwkAQRdNYiPoPA9ZCHmovotgb6zDuXnVgH3F38v-a4AdY3cM9Z16828QSJDyJybN5SQA5cJouHy0caSQLRfKjY-oTrBiFJRUPspI1yX1QiYESHE8mEhyMphjEkIneD1_gscnLYvZgl7H67aJYn0_t8bJBHzvkng0CtLtd67Juynq331aHqvmv-gDaC0Uq</recordid><startdate>20230126</startdate><enddate>20230126</enddate><creator>Zhao, Tong</creator><creator>Tsai, Ming-Chi</creator><creator>Roy Chowdhury, Amber</creator><scope>EVB</scope></search><sort><creationdate>20230126</creationdate><title>Training a machine learning model to determine a predicted time distribution related to electronic communications</title><author>Zhao, Tong ; Tsai, Ming-Chi ; Roy Chowdhury, Amber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023025641A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Tong</creatorcontrib><creatorcontrib>Tsai, Ming-Chi</creatorcontrib><creatorcontrib>Roy Chowdhury, Amber</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Tong</au><au>Tsai, Ming-Chi</au><au>Roy Chowdhury, Amber</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Training a machine learning model to determine a predicted time distribution related to electronic communications</title><date>2023-01-26</date><risdate>2023</risdate><abstract>Techniques for training a machine learning model to determine a predicted time distribution related to electronic communications are discussed herein. The machine learning model is trained based at least in part on time to open data indicative of respective time to open terms that begin at respective transmission times for electronic communications and end at respective electronic communication access event times. Additionally, based at least in part on the predicted time distribution determined by the machine learning model, respective access scores for an electronic communication being accessed via the user device at the respective times are determined to provide a new electronic communication for rendering via an electronic interface of a user device.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023025641A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Training a machine learning model to determine a predicted time distribution related to electronic communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zhao,%20Tong&rft.date=2023-01-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023025641A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true