DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL

This disclosure describes embodiments of systems, methods, and non-transitory computer readable storage media that utilize a machine-learning model to detect mass file deletions, mass file downloads, ransomware encryptions, or other anomalous digital events within a digital-content-synchronization p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Andrabi, Sarah, Goldstein, Effi, Tamir, Omer, Borshevsky, Boris
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Andrabi, Sarah
Goldstein, Effi
Tamir, Omer
Borshevsky, Boris
description This disclosure describes embodiments of systems, methods, and non-transitory computer readable storage media that utilize a machine-learning model to detect mass file deletions, mass file downloads, ransomware encryptions, or other anomalous digital events within a digital-content-synchronization platform. For example, the disclosed systems can monitor digital actions executed across a digital-content-synchronization platform in real (or near-real) time and use a machine-learning model to analyze features of such digital actions to distinguish and detect anomalous actions. Upon detection, the disclosed systems can alert a client device of the anomalous actions with an explanatory rationale and, in some cases, perform (or provide options to perform) a remedial action to neutralize or contain the anomalous actions. Furthermore, the disclosed systems can also modify the machine-learning model based on interactions received from an administrator device in response to the anomalous actions.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023007023A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023007023A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023007023A13</originalsourceid><addsrcrecordid>eNrjZPBycQ1xdQ7x9HNXcPTz93X08Q8NVnDxdPcMcfRRcARK-PsFK4SGePp4RkHUIJTpQrX6-yn4-ru4-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI2MDA3Mg6WhoTJwqADKwLno</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL</title><source>esp@cenet</source><creator>Andrabi, Sarah ; Goldstein, Effi ; Tamir, Omer ; Borshevsky, Boris</creator><creatorcontrib>Andrabi, Sarah ; Goldstein, Effi ; Tamir, Omer ; Borshevsky, Boris</creatorcontrib><description>This disclosure describes embodiments of systems, methods, and non-transitory computer readable storage media that utilize a machine-learning model to detect mass file deletions, mass file downloads, ransomware encryptions, or other anomalous digital events within a digital-content-synchronization platform. For example, the disclosed systems can monitor digital actions executed across a digital-content-synchronization platform in real (or near-real) time and use a machine-learning model to analyze features of such digital actions to distinguish and detect anomalous actions. Upon detection, the disclosed systems can alert a client device of the anomalous actions with an explanatory rationale and, in some cases, perform (or provide options to perform) a remedial action to neutralize or contain the anomalous actions. Furthermore, the disclosed systems can also modify the machine-learning model based on interactions received from an administrator device in response to the anomalous actions.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230105&amp;DB=EPODOC&amp;CC=US&amp;NR=2023007023A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230105&amp;DB=EPODOC&amp;CC=US&amp;NR=2023007023A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Andrabi, Sarah</creatorcontrib><creatorcontrib>Goldstein, Effi</creatorcontrib><creatorcontrib>Tamir, Omer</creatorcontrib><creatorcontrib>Borshevsky, Boris</creatorcontrib><title>DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL</title><description>This disclosure describes embodiments of systems, methods, and non-transitory computer readable storage media that utilize a machine-learning model to detect mass file deletions, mass file downloads, ransomware encryptions, or other anomalous digital events within a digital-content-synchronization platform. For example, the disclosed systems can monitor digital actions executed across a digital-content-synchronization platform in real (or near-real) time and use a machine-learning model to analyze features of such digital actions to distinguish and detect anomalous actions. Upon detection, the disclosed systems can alert a client device of the anomalous actions with an explanatory rationale and, in some cases, perform (or provide options to perform) a remedial action to neutralize or contain the anomalous actions. Furthermore, the disclosed systems can also modify the machine-learning model based on interactions received from an administrator device in response to the anomalous actions.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBycQ1xdQ7x9HNXcPTz93X08Q8NVnDxdPcMcfRRcARK-PsFK4SGePp4RkHUIJTpQrX6-yn4-ru4-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDI2MDA3Mg6WhoTJwqADKwLno</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Andrabi, Sarah</creator><creator>Goldstein, Effi</creator><creator>Tamir, Omer</creator><creator>Borshevsky, Boris</creator><scope>EVB</scope></search><sort><creationdate>20230105</creationdate><title>DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL</title><author>Andrabi, Sarah ; Goldstein, Effi ; Tamir, Omer ; Borshevsky, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023007023A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrabi, Sarah</creatorcontrib><creatorcontrib>Goldstein, Effi</creatorcontrib><creatorcontrib>Tamir, Omer</creatorcontrib><creatorcontrib>Borshevsky, Boris</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrabi, Sarah</au><au>Goldstein, Effi</au><au>Tamir, Omer</au><au>Borshevsky, Boris</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL</title><date>2023-01-05</date><risdate>2023</risdate><abstract>This disclosure describes embodiments of systems, methods, and non-transitory computer readable storage media that utilize a machine-learning model to detect mass file deletions, mass file downloads, ransomware encryptions, or other anomalous digital events within a digital-content-synchronization platform. For example, the disclosed systems can monitor digital actions executed across a digital-content-synchronization platform in real (or near-real) time and use a machine-learning model to analyze features of such digital actions to distinguish and detect anomalous actions. Upon detection, the disclosed systems can alert a client device of the anomalous actions with an explanatory rationale and, in some cases, perform (or provide options to perform) a remedial action to neutralize or contain the anomalous actions. Furthermore, the disclosed systems can also modify the machine-learning model based on interactions received from an administrator device in response to the anomalous actions.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023007023A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DETECTING ANOMALOUS DIGITAL ACTIONS UTILIZING AN ANOMALOUS-DETECTION MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Andrabi,%20Sarah&rft.date=2023-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023007023A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true