COMPLEMENTARY SPARSITY IN PROCESSING TENSORS

A hardware accelerator that is efficient at performing computations related to tensors. The hardware accelerator may store a complementary dense process tensor that is combined from a plurality of sparse process tensors. The plurality of sparse process tensors have non-overlapping locations of activ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spracklen, Lawrence, Hunter, Kevin Lee, Ahmad, Subutai
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Spracklen, Lawrence
Hunter, Kevin Lee
Ahmad, Subutai
description A hardware accelerator that is efficient at performing computations related to tensors. The hardware accelerator may store a complementary dense process tensor that is combined from a plurality of sparse process tensors. The plurality of sparse process tensors have non-overlapping locations of active values. The hardware accelerator may perform elementwise operations between the complementary dense process tensor and an activation tensor to generate a product tensor. The hardware accelerator may re-arrange the product tensor based on a permutation logic to separate the products into groups. Each group corresponds to one of the sparse process tensors. Each group may be accumulated separately to generate a plurality of output values. The output values may be selected in an activation selection. The activation selection may be a dense activation or a sparse activation such as k winner activation that set non-winners to zeros.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2023004800A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2023004800A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2023004800A13</originalsourceid><addsrcrecordid>eNrjZNBx9vcN8HH1dfULcQyKVAgOcAwK9gyJVPD0UwgI8nd2DQ729HNXCHH1C_YPCuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRsYGBiYWBgaOhsbEqQIAaHwmjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMPLEMENTARY SPARSITY IN PROCESSING TENSORS</title><source>esp@cenet</source><creator>Spracklen, Lawrence ; Hunter, Kevin Lee ; Ahmad, Subutai</creator><creatorcontrib>Spracklen, Lawrence ; Hunter, Kevin Lee ; Ahmad, Subutai</creatorcontrib><description>A hardware accelerator that is efficient at performing computations related to tensors. The hardware accelerator may store a complementary dense process tensor that is combined from a plurality of sparse process tensors. The plurality of sparse process tensors have non-overlapping locations of active values. The hardware accelerator may perform elementwise operations between the complementary dense process tensor and an activation tensor to generate a product tensor. The hardware accelerator may re-arrange the product tensor based on a permutation logic to separate the products into groups. Each group corresponds to one of the sparse process tensors. Each group may be accumulated separately to generate a plurality of output values. The output values may be selected in an activation selection. The activation selection may be a dense activation or a sparse activation such as k winner activation that set non-winners to zeros.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230105&amp;DB=EPODOC&amp;CC=US&amp;NR=2023004800A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230105&amp;DB=EPODOC&amp;CC=US&amp;NR=2023004800A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Spracklen, Lawrence</creatorcontrib><creatorcontrib>Hunter, Kevin Lee</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><title>COMPLEMENTARY SPARSITY IN PROCESSING TENSORS</title><description>A hardware accelerator that is efficient at performing computations related to tensors. The hardware accelerator may store a complementary dense process tensor that is combined from a plurality of sparse process tensors. The plurality of sparse process tensors have non-overlapping locations of active values. The hardware accelerator may perform elementwise operations between the complementary dense process tensor and an activation tensor to generate a product tensor. The hardware accelerator may re-arrange the product tensor based on a permutation logic to separate the products into groups. Each group corresponds to one of the sparse process tensors. Each group may be accumulated separately to generate a plurality of output values. The output values may be selected in an activation selection. The activation selection may be a dense activation or a sparse activation such as k winner activation that set non-winners to zeros.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBx9vcN8HH1dfULcQyKVAgOcAwK9gyJVPD0UwgI8nd2DQ729HNXCHH1C_YPCuZhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRsYGBiYWBgaOhsbEqQIAaHwmjg</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Spracklen, Lawrence</creator><creator>Hunter, Kevin Lee</creator><creator>Ahmad, Subutai</creator><scope>EVB</scope></search><sort><creationdate>20230105</creationdate><title>COMPLEMENTARY SPARSITY IN PROCESSING TENSORS</title><author>Spracklen, Lawrence ; Hunter, Kevin Lee ; Ahmad, Subutai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2023004800A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Spracklen, Lawrence</creatorcontrib><creatorcontrib>Hunter, Kevin Lee</creatorcontrib><creatorcontrib>Ahmad, Subutai</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spracklen, Lawrence</au><au>Hunter, Kevin Lee</au><au>Ahmad, Subutai</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMPLEMENTARY SPARSITY IN PROCESSING TENSORS</title><date>2023-01-05</date><risdate>2023</risdate><abstract>A hardware accelerator that is efficient at performing computations related to tensors. The hardware accelerator may store a complementary dense process tensor that is combined from a plurality of sparse process tensors. The plurality of sparse process tensors have non-overlapping locations of active values. The hardware accelerator may perform elementwise operations between the complementary dense process tensor and an activation tensor to generate a product tensor. The hardware accelerator may re-arrange the product tensor based on a permutation logic to separate the products into groups. Each group corresponds to one of the sparse process tensors. Each group may be accumulated separately to generate a plurality of output values. The output values may be selected in an activation selection. The activation selection may be a dense activation or a sparse activation such as k winner activation that set non-winners to zeros.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2023004800A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title COMPLEMENTARY SPARSITY IN PROCESSING TENSORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Spracklen,%20Lawrence&rft.date=2023-01-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2023004800A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true