TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT
Techniques for training data protection in an artificial intelligence model execution environment are disclosed. For example, a method comprises executing a first partition of an artificial intelligence model within a secure execution area of an information processing system and a second partition o...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Jia, Zhen Liu, Jinpeng Durazzo, Kenneth Estrin, Michael |
description | Techniques for training data protection in an artificial intelligence model execution environment are disclosed. For example, a method comprises executing a first partition of an artificial intelligence model within a secure execution area of an information processing system and a second partition of the artificial intelligence model within a non-secure execution area of the information processing system, wherein data at least one of obtained and processed in the first partition of the artificial intelligence model is inaccessible to the second partition of the artificial intelligence model. Communication between the first partition and the second partition may be enabled via a model parallelism-based procedure. Data obtained in the secure execution area may comprise one or more data samples in an encrypted form usable to train the artificial intelligence model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022414223A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022414223A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022414223A13</originalsourceid><addsrcrecordid>eNqNy0EKwjAQheFuXIh6hwHXgk17gZBM6kA6KXEq7kKRuBIt1PsjEQ_g6sHP99ZVkqiJiTuwWjQMMQgaocDgQgQdhRwZ0h6IBb2nDtkg9MFiSTAUUThawCua8XtFvlAM3CPLtlrdp8eSd7_dVHuHYk6HPL9SXubplp_5ncazOirV1q1Sja6b_9QHRR00aQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT</title><source>esp@cenet</source><creator>Jia, Zhen ; Liu, Jinpeng ; Durazzo, Kenneth ; Estrin, Michael</creator><creatorcontrib>Jia, Zhen ; Liu, Jinpeng ; Durazzo, Kenneth ; Estrin, Michael</creatorcontrib><description>Techniques for training data protection in an artificial intelligence model execution environment are disclosed. For example, a method comprises executing a first partition of an artificial intelligence model within a secure execution area of an information processing system and a second partition of the artificial intelligence model within a non-secure execution area of the information processing system, wherein data at least one of obtained and processed in the first partition of the artificial intelligence model is inaccessible to the second partition of the artificial intelligence model. Communication between the first partition and the second partition may be enabled via a model parallelism-based procedure. Data obtained in the secure execution area may comprise one or more data samples in an encrypted form usable to train the artificial intelligence model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221229&DB=EPODOC&CC=US&NR=2022414223A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221229&DB=EPODOC&CC=US&NR=2022414223A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jia, Zhen</creatorcontrib><creatorcontrib>Liu, Jinpeng</creatorcontrib><creatorcontrib>Durazzo, Kenneth</creatorcontrib><creatorcontrib>Estrin, Michael</creatorcontrib><title>TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT</title><description>Techniques for training data protection in an artificial intelligence model execution environment are disclosed. For example, a method comprises executing a first partition of an artificial intelligence model within a secure execution area of an information processing system and a second partition of the artificial intelligence model within a non-secure execution area of the information processing system, wherein data at least one of obtained and processed in the first partition of the artificial intelligence model is inaccessible to the second partition of the artificial intelligence model. Communication between the first partition and the second partition may be enabled via a model parallelism-based procedure. Data obtained in the secure execution area may comprise one or more data samples in an encrypted form usable to train the artificial intelligence model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy0EKwjAQheFuXIh6hwHXgk17gZBM6kA6KXEq7kKRuBIt1PsjEQ_g6sHP99ZVkqiJiTuwWjQMMQgaocDgQgQdhRwZ0h6IBb2nDtkg9MFiSTAUUThawCua8XtFvlAM3CPLtlrdp8eSd7_dVHuHYk6HPL9SXubplp_5ncazOirV1q1Sja6b_9QHRR00aQ</recordid><startdate>20221229</startdate><enddate>20221229</enddate><creator>Jia, Zhen</creator><creator>Liu, Jinpeng</creator><creator>Durazzo, Kenneth</creator><creator>Estrin, Michael</creator><scope>EVB</scope></search><sort><creationdate>20221229</creationdate><title>TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT</title><author>Jia, Zhen ; Liu, Jinpeng ; Durazzo, Kenneth ; Estrin, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022414223A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Jia, Zhen</creatorcontrib><creatorcontrib>Liu, Jinpeng</creatorcontrib><creatorcontrib>Durazzo, Kenneth</creatorcontrib><creatorcontrib>Estrin, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jia, Zhen</au><au>Liu, Jinpeng</au><au>Durazzo, Kenneth</au><au>Estrin, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT</title><date>2022-12-29</date><risdate>2022</risdate><abstract>Techniques for training data protection in an artificial intelligence model execution environment are disclosed. For example, a method comprises executing a first partition of an artificial intelligence model within a secure execution area of an information processing system and a second partition of the artificial intelligence model within a non-secure execution area of the information processing system, wherein data at least one of obtained and processed in the first partition of the artificial intelligence model is inaccessible to the second partition of the artificial intelligence model. Communication between the first partition and the second partition may be enabled via a model parallelism-based procedure. Data obtained in the secure execution area may comprise one or more data samples in an encrypted form usable to train the artificial intelligence model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022414223A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | TRAINING DATA PROTECTION FOR ARTIFICIAL INTELLIGENCE MODEL IN PARTITIONED EXECUTION ENVIRONMENT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A22%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Jia,%20Zhen&rft.date=2022-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022414223A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |