CLOUD BASED MACHINE LEARNING

Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hurwitz, Jordan, Tulyakov, Sergey, Vij, Shubham, Buehl, Eric
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hurwitz, Jordan
Tulyakov, Sergey
Vij, Shubham
Buehl, Eric
description Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022405637A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022405637A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022405637A13</originalsourceid><addsrcrecordid>eNrjZJBx9vEPdVFwcgx2dVHwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRiYGpmbG5o6GxsSpAgDVViFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CLOUD BASED MACHINE LEARNING</title><source>esp@cenet</source><creator>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</creator><creatorcontrib>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</creatorcontrib><description>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221222&amp;DB=EPODOC&amp;CC=US&amp;NR=2022405637A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221222&amp;DB=EPODOC&amp;CC=US&amp;NR=2022405637A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hurwitz, Jordan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Vij, Shubham</creatorcontrib><creatorcontrib>Buehl, Eric</creatorcontrib><title>CLOUD BASED MACHINE LEARNING</title><description>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBx9vEPdVFwcgx2dVHwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRiYGpmbG5o6GxsSpAgDVViFw</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Hurwitz, Jordan</creator><creator>Tulyakov, Sergey</creator><creator>Vij, Shubham</creator><creator>Buehl, Eric</creator><scope>EVB</scope></search><sort><creationdate>20221222</creationdate><title>CLOUD BASED MACHINE LEARNING</title><author>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022405637A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, Jordan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Vij, Shubham</creatorcontrib><creatorcontrib>Buehl, Eric</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hurwitz, Jordan</au><au>Tulyakov, Sergey</au><au>Vij, Shubham</au><au>Buehl, Eric</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CLOUD BASED MACHINE LEARNING</title><date>2022-12-22</date><risdate>2022</risdate><abstract>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022405637A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title CLOUD BASED MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hurwitz,%20Jordan&rft.date=2022-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022405637A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true