CLOUD BASED MACHINE LEARNING
Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hurwitz, Jordan Tulyakov, Sergey Vij, Shubham Buehl, Eric |
description | Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022405637A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022405637A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022405637A13</originalsourceid><addsrcrecordid>eNrjZJBx9vEPdVFwcgx2dVHwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRiYGpmbG5o6GxsSpAgDVViFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CLOUD BASED MACHINE LEARNING</title><source>esp@cenet</source><creator>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</creator><creatorcontrib>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</creatorcontrib><description>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221222&DB=EPODOC&CC=US&NR=2022405637A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221222&DB=EPODOC&CC=US&NR=2022405637A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hurwitz, Jordan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Vij, Shubham</creatorcontrib><creatorcontrib>Buehl, Eric</creatorcontrib><title>CLOUD BASED MACHINE LEARNING</title><description>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJBx9vEPdVFwcgx2dVHwdXT28PRzVfBxdQzy8_Rz52FgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGRiYGpmbG5o6GxsSpAgDVViFw</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Hurwitz, Jordan</creator><creator>Tulyakov, Sergey</creator><creator>Vij, Shubham</creator><creator>Buehl, Eric</creator><scope>EVB</scope></search><sort><creationdate>20221222</creationdate><title>CLOUD BASED MACHINE LEARNING</title><author>Hurwitz, Jordan ; Tulyakov, Sergey ; Vij, Shubham ; Buehl, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022405637A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hurwitz, Jordan</creatorcontrib><creatorcontrib>Tulyakov, Sergey</creatorcontrib><creatorcontrib>Vij, Shubham</creatorcontrib><creatorcontrib>Buehl, Eric</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hurwitz, Jordan</au><au>Tulyakov, Sergey</au><au>Vij, Shubham</au><au>Buehl, Eric</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CLOUD BASED MACHINE LEARNING</title><date>2022-12-22</date><risdate>2022</risdate><abstract>Disclosed are various embodiments for implementing computational tasks in a cloud environment in one or more operating system level virtualized containers. A parameter file can specify different parameters including hardware parameters, library parameters, user code parameters, and job parameters (e.g., sets of hyperparameters). The parameter file can be converted via a mapping and implemented in a cloud-based container platform.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022405637A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | CLOUD BASED MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hurwitz,%20Jordan&rft.date=2022-12-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022405637A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |