INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS
This disclosure describes methods, non-transitory computer readable storage media, and systems that provide a platform for on-demand selection of machine-learning models and on-demand learning of parameters for the selected machine-learning models via cloud-based systems. For instance, the disclosed...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Le, Nham Van Kim, Doo Soon Lai, Tuan Manh Bui, Trung |
description | This disclosure describes methods, non-transitory computer readable storage media, and systems that provide a platform for on-demand selection of machine-learning models and on-demand learning of parameters for the selected machine-learning models via cloud-based systems. For instance, the disclosed system receives a request indicating a selection of a machine-learning model to perform a machine-learning task (e.g., a natural language task) utilizing a specific dataset (e.g., a user-defined dataset). The disclosed system utilizes a scheduler to monitor available computing devices on cloud-based storage systems for instantiating the selected machine-learning model. Using the indicated dataset at a determined cloud-based computing device, the disclosed system automatically trains the machine-learning model. In additional embodiments, the disclosed system generates a dataset visualization, such as an interactive confusion matrix, for interactively viewing and selecting data generated by the machine-learning model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022383150A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022383150A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022383150A13</originalsourceid><addsrcrecordid>eNqNzLsKwkAQheE0FqK-w4D1Qi4ItmNmYhaSCWRmEasQZK1EA_H9MYgPYHXg5-Osk9GLGop5NC9naLGsvbBrGHv5ho64UUCDThxxi0JQNl0gd0JlAr2qcatw8VZDUO4XVC0PBIS2CNNtsrqPjznufrtJ9hVbWbs4vYY4T-MtPuN7CJqneV4ci-yQYlb8pz6EzjSW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS</title><source>esp@cenet</source><creator>Le, Nham Van ; Kim, Doo Soon ; Lai, Tuan Manh ; Bui, Trung</creator><creatorcontrib>Le, Nham Van ; Kim, Doo Soon ; Lai, Tuan Manh ; Bui, Trung</creatorcontrib><description>This disclosure describes methods, non-transitory computer readable storage media, and systems that provide a platform for on-demand selection of machine-learning models and on-demand learning of parameters for the selected machine-learning models via cloud-based systems. For instance, the disclosed system receives a request indicating a selection of a machine-learning model to perform a machine-learning task (e.g., a natural language task) utilizing a specific dataset (e.g., a user-defined dataset). The disclosed system utilizes a scheduler to monitor available computing devices on cloud-based storage systems for instantiating the selected machine-learning model. Using the indicated dataset at a determined cloud-based computing device, the disclosed system automatically trains the machine-learning model. In additional embodiments, the disclosed system generates a dataset visualization, such as an interactive confusion matrix, for interactively viewing and selecting data generated by the machine-learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&CC=US&NR=2022383150A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221201&DB=EPODOC&CC=US&NR=2022383150A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Le, Nham Van</creatorcontrib><creatorcontrib>Kim, Doo Soon</creatorcontrib><creatorcontrib>Lai, Tuan Manh</creatorcontrib><creatorcontrib>Bui, Trung</creatorcontrib><title>INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS</title><description>This disclosure describes methods, non-transitory computer readable storage media, and systems that provide a platform for on-demand selection of machine-learning models and on-demand learning of parameters for the selected machine-learning models via cloud-based systems. For instance, the disclosed system receives a request indicating a selection of a machine-learning model to perform a machine-learning task (e.g., a natural language task) utilizing a specific dataset (e.g., a user-defined dataset). The disclosed system utilizes a scheduler to monitor available computing devices on cloud-based storage systems for instantiating the selected machine-learning model. Using the indicated dataset at a determined cloud-based computing device, the disclosed system automatically trains the machine-learning model. In additional embodiments, the disclosed system generates a dataset visualization, such as an interactive confusion matrix, for interactively viewing and selecting data generated by the machine-learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLsKwkAQheE0FqK-w4D1Qi4ItmNmYhaSCWRmEasQZK1EA_H9MYgPYHXg5-Osk9GLGop5NC9naLGsvbBrGHv5ho64UUCDThxxi0JQNl0gd0JlAr2qcatw8VZDUO4XVC0PBIS2CNNtsrqPjznufrtJ9hVbWbs4vYY4T-MtPuN7CJqneV4ci-yQYlb8pz6EzjSW</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Le, Nham Van</creator><creator>Kim, Doo Soon</creator><creator>Lai, Tuan Manh</creator><creator>Bui, Trung</creator><scope>EVB</scope></search><sort><creationdate>20221201</creationdate><title>INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS</title><author>Le, Nham Van ; Kim, Doo Soon ; Lai, Tuan Manh ; Bui, Trung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022383150A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Le, Nham Van</creatorcontrib><creatorcontrib>Kim, Doo Soon</creatorcontrib><creatorcontrib>Lai, Tuan Manh</creatorcontrib><creatorcontrib>Bui, Trung</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, Nham Van</au><au>Kim, Doo Soon</au><au>Lai, Tuan Manh</au><au>Bui, Trung</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS</title><date>2022-12-01</date><risdate>2022</risdate><abstract>This disclosure describes methods, non-transitory computer readable storage media, and systems that provide a platform for on-demand selection of machine-learning models and on-demand learning of parameters for the selected machine-learning models via cloud-based systems. For instance, the disclosed system receives a request indicating a selection of a machine-learning model to perform a machine-learning task (e.g., a natural language task) utilizing a specific dataset (e.g., a user-defined dataset). The disclosed system utilizes a scheduler to monitor available computing devices on cloud-based storage systems for instantiating the selected machine-learning model. Using the indicated dataset at a determined cloud-based computing device, the disclosed system automatically trains the machine-learning model. In additional embodiments, the disclosed system generates a dataset visualization, such as an interactive confusion matrix, for interactively viewing and selecting data generated by the machine-learning model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022383150A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | INSTANTIATING MACHINE-LEARNING MODELS AT ON-DEMAND CLOUD-BASED SYSTEMS WITH USER-DEFINED DATASETS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Le,%20Nham%20Van&rft.date=2022-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022383150A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |