SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH
Embodiments described herein provides a contrastive learning framework that leverages hard negative examples, that are mined globally from the entire training corpus for a given query to improve the quality of code and natural language representations. Specifically, similar examples from the trainin...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Joty, Shafiq Rayhan Gotmare, Akhilesh Deepak Li, Junnan Hoi, Chu Hong |
description | Embodiments described herein provides a contrastive learning framework that leverages hard negative examples, that are mined globally from the entire training corpus for a given query to improve the quality of code and natural language representations. Specifically, similar examples from the training corpus are extracted and used as hard negatives in an online manner during training while keeping the minibatch construction random. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022374595A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022374595A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022374595A13</originalsourceid><addsrcrecordid>eNrjZNAJjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1IIdvV19AvxdFZw9ndxBfIcg5w9eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRkbG5iamlqaOhMXGqAB_hJgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH</title><source>esp@cenet</source><creator>Joty, Shafiq Rayhan ; Gotmare, Akhilesh Deepak ; Li, Junnan ; Hoi, Chu Hong</creator><creatorcontrib>Joty, Shafiq Rayhan ; Gotmare, Akhilesh Deepak ; Li, Junnan ; Hoi, Chu Hong</creatorcontrib><description>Embodiments described herein provides a contrastive learning framework that leverages hard negative examples, that are mined globally from the entire training corpus for a given query to improve the quality of code and natural language representations. Specifically, similar examples from the training corpus are extracted and used as hard negatives in an online manner during training while keeping the minibatch construction random.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221124&DB=EPODOC&CC=US&NR=2022374595A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221124&DB=EPODOC&CC=US&NR=2022374595A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Joty, Shafiq Rayhan</creatorcontrib><creatorcontrib>Gotmare, Akhilesh Deepak</creatorcontrib><creatorcontrib>Li, Junnan</creatorcontrib><creatorcontrib>Hoi, Chu Hong</creatorcontrib><title>SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH</title><description>Embodiments described herein provides a contrastive learning framework that leverages hard negative examples, that are mined globally from the entire training corpus for a given query to improve the quality of code and natural language representations. Specifically, similar examples from the training corpus are extracted and used as hard negatives in an online manner during training while keeping the minibatch construction random.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAJjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1IIdvV19AvxdFZw9ndxBfIcg5w9eBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkYGRkbG5iamlqaOhMXGqAB_hJgA</recordid><startdate>20221124</startdate><enddate>20221124</enddate><creator>Joty, Shafiq Rayhan</creator><creator>Gotmare, Akhilesh Deepak</creator><creator>Li, Junnan</creator><creator>Hoi, Chu Hong</creator><scope>EVB</scope></search><sort><creationdate>20221124</creationdate><title>SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH</title><author>Joty, Shafiq Rayhan ; Gotmare, Akhilesh Deepak ; Li, Junnan ; Hoi, Chu Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022374595A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Joty, Shafiq Rayhan</creatorcontrib><creatorcontrib>Gotmare, Akhilesh Deepak</creatorcontrib><creatorcontrib>Li, Junnan</creatorcontrib><creatorcontrib>Hoi, Chu Hong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joty, Shafiq Rayhan</au><au>Gotmare, Akhilesh Deepak</au><au>Li, Junnan</au><au>Hoi, Chu Hong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH</title><date>2022-11-24</date><risdate>2022</risdate><abstract>Embodiments described herein provides a contrastive learning framework that leverages hard negative examples, that are mined globally from the entire training corpus for a given query to improve the quality of code and natural language representations. Specifically, similar examples from the training corpus are extracted and used as hard negatives in an online manner during training while keeping the minibatch construction random.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022374595A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | SYSTEMS AND METHODS FOR SEMANTIC CODE SEARCH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Joty,%20Shafiq%20Rayhan&rft.date=2022-11-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022374595A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |