DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS

Novel tools and techniques are provided for implementing digital microscopy imaging using deep learning-based segmentation and/or implementing instance segmentation based on partial annotations. In various embodiments, a computing system might receive first and second images, the first image compris...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BEN-DOR, Amir, ARBEL, Elad, REMER, Itay
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BEN-DOR, Amir
ARBEL, Elad
REMER, Itay
description Novel tools and techniques are provided for implementing digital microscopy imaging using deep learning-based segmentation and/or implementing instance segmentation based on partial annotations. In various embodiments, a computing system might receive first and second images, the first image comprising a field of view of a biological sample, while the second image comprises labeling of objects of interest in the biological sample. The computing system might encode, using an encoder, the second image to generate third and fourth encoded images (different from each other) that comprise proximity scores or maps. The computing system might train an AI system to predict objects of interest based at least in part on the third and fourth encoded images. The computing system might generate (using regression) and decode (using a decoder) two or more images based on a new image of a biological sample to predict labeling of objects in the new image.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022366564A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022366564A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022366564A13</originalsourceid><addsrcrecordid>eNrjZPBwcXUNUPBxdQzy8_RzV3ByDHZ1UfD0Cw5x9HN2VQh2dfd19QtxDPH091MI83RU8A31CfEM8HFVCHJ1D3INDgaJ-zhGugYF8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI2MzM1MzE0dDY-JUAQDCvS34</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS</title><source>esp@cenet</source><creator>BEN-DOR, Amir ; ARBEL, Elad ; REMER, Itay</creator><creatorcontrib>BEN-DOR, Amir ; ARBEL, Elad ; REMER, Itay</creatorcontrib><description>Novel tools and techniques are provided for implementing digital microscopy imaging using deep learning-based segmentation and/or implementing instance segmentation based on partial annotations. In various embodiments, a computing system might receive first and second images, the first image comprising a field of view of a biological sample, while the second image comprises labeling of objects of interest in the biological sample. The computing system might encode, using an encoder, the second image to generate third and fourth encoded images (different from each other) that comprise proximity scores or maps. The computing system might train an AI system to predict objects of interest based at least in part on the third and fourth encoded images. The computing system might generate (using regression) and decode (using a decoder) two or more images based on a new image of a biological sample to predict labeling of objects in the new image.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221117&amp;DB=EPODOC&amp;CC=US&amp;NR=2022366564A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221117&amp;DB=EPODOC&amp;CC=US&amp;NR=2022366564A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BEN-DOR, Amir</creatorcontrib><creatorcontrib>ARBEL, Elad</creatorcontrib><creatorcontrib>REMER, Itay</creatorcontrib><title>DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS</title><description>Novel tools and techniques are provided for implementing digital microscopy imaging using deep learning-based segmentation and/or implementing instance segmentation based on partial annotations. In various embodiments, a computing system might receive first and second images, the first image comprising a field of view of a biological sample, while the second image comprises labeling of objects of interest in the biological sample. The computing system might encode, using an encoder, the second image to generate third and fourth encoded images (different from each other) that comprise proximity scores or maps. The computing system might train an AI system to predict objects of interest based at least in part on the third and fourth encoded images. The computing system might generate (using regression) and decode (using a decoder) two or more images based on a new image of a biological sample to predict labeling of objects in the new image.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBwcXUNUPBxdQzy8_RzV3ByDHZ1UfD0Cw5x9HN2VQh2dfd19QtxDPH091MI83RU8A31CfEM8HFVCHJ1D3INDgaJ-zhGugYF8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI2MzM1MzE0dDY-JUAQDCvS34</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>BEN-DOR, Amir</creator><creator>ARBEL, Elad</creator><creator>REMER, Itay</creator><scope>EVB</scope></search><sort><creationdate>20221117</creationdate><title>DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS</title><author>BEN-DOR, Amir ; ARBEL, Elad ; REMER, Itay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022366564A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BEN-DOR, Amir</creatorcontrib><creatorcontrib>ARBEL, Elad</creatorcontrib><creatorcontrib>REMER, Itay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BEN-DOR, Amir</au><au>ARBEL, Elad</au><au>REMER, Itay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS</title><date>2022-11-17</date><risdate>2022</risdate><abstract>Novel tools and techniques are provided for implementing digital microscopy imaging using deep learning-based segmentation and/or implementing instance segmentation based on partial annotations. In various embodiments, a computing system might receive first and second images, the first image comprising a field of view of a biological sample, while the second image comprises labeling of objects of interest in the biological sample. The computing system might encode, using an encoder, the second image to generate third and fourth encoded images (different from each other) that comprise proximity scores or maps. The computing system might train an AI system to predict objects of interest based at least in part on the third and fourth encoded images. The computing system might generate (using regression) and decode (using a decoder) two or more images based on a new image of a biological sample to predict labeling of objects in the new image.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022366564A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title DEEP LEARNING BASED INSTANCE SEGMENTATION VIA MULTIPLE REGRESSION LAYERS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BEN-DOR,%20Amir&rft.date=2022-11-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022366564A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true