OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING

Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI, Yunyi, BAI, Xiaoqing, WANG, Rui, ZHU, Yun, WANG, Puming, JIA, Yujing, DIAO, Tianyi, SHANG, Qinghua, CHEN, Biyun, WEI, Shangfu, SHI, Xiaoqing, LIU, Guang, TANG, Xian, ZHU, Songyang, LI, Bin, WANG, Xinwen, WENG, Zonglong, ZHANG, Ge, ZHENG, Liqin, LI, Peijie, CHEN, Danlei
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI, Yunyi
BAI, Xiaoqing
WANG, Rui
ZHU, Yun
WANG, Puming
JIA, Yujing
DIAO, Tianyi
SHANG, Qinghua
CHEN, Biyun
WEI, Shangfu
SHI, Xiaoqing
LIU, Guang
TANG, Xian
ZHU, Songyang
LI, Bin
WANG, Xinwen
WENG, Zonglong
ZHANG, Ge
ZHENG, Liqin
LI, Peijie
CHEN, Danlei
description Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022360079A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022360079A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022360079A13</originalsourceid><addsrcrecordid>eNqNzEEKwjAQheFuXIh6hwHXQm1BcZk2kzYYO3WSUFyVInElWqjg9Q3oAVw9Hvx88-RNrdMnYaClDhmUoQ5EefaadVPBCV1NEhQxMFaamhhKbR3rwrt4oUHXER-BFNioGKgvkulrVUy-tVAIixJiKxFbMCi4ifQymd2G-xRWv10ka4WurDdhfPZhGodreIRX722WZlm-S9P9QWzz_6oPhQw6_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><source>esp@cenet</source><creator>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</creator><creatorcontrib>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</creatorcontrib><description>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</description><language>eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221110&amp;DB=EPODOC&amp;CC=US&amp;NR=2022360079A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221110&amp;DB=EPODOC&amp;CC=US&amp;NR=2022360079A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI, Yunyi</creatorcontrib><creatorcontrib>BAI, Xiaoqing</creatorcontrib><creatorcontrib>WANG, Rui</creatorcontrib><creatorcontrib>ZHU, Yun</creatorcontrib><creatorcontrib>WANG, Puming</creatorcontrib><creatorcontrib>JIA, Yujing</creatorcontrib><creatorcontrib>DIAO, Tianyi</creatorcontrib><creatorcontrib>SHANG, Qinghua</creatorcontrib><creatorcontrib>CHEN, Biyun</creatorcontrib><creatorcontrib>WEI, Shangfu</creatorcontrib><creatorcontrib>SHI, Xiaoqing</creatorcontrib><creatorcontrib>LIU, Guang</creatorcontrib><creatorcontrib>TANG, Xian</creatorcontrib><creatorcontrib>ZHU, Songyang</creatorcontrib><creatorcontrib>LI, Bin</creatorcontrib><creatorcontrib>WANG, Xinwen</creatorcontrib><creatorcontrib>WENG, Zonglong</creatorcontrib><creatorcontrib>ZHANG, Ge</creatorcontrib><creatorcontrib>ZHENG, Liqin</creatorcontrib><creatorcontrib>LI, Peijie</creatorcontrib><creatorcontrib>CHEN, Danlei</creatorcontrib><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><description>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzEEKwjAQheFuXIh6hwHXQm1BcZk2kzYYO3WSUFyVInElWqjg9Q3oAVw9Hvx88-RNrdMnYaClDhmUoQ5EefaadVPBCV1NEhQxMFaamhhKbR3rwrt4oUHXER-BFNioGKgvkulrVUy-tVAIixJiKxFbMCi4ifQymd2G-xRWv10ka4WurDdhfPZhGodreIRX722WZlm-S9P9QWzz_6oPhQw6_A</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>LI, Yunyi</creator><creator>BAI, Xiaoqing</creator><creator>WANG, Rui</creator><creator>ZHU, Yun</creator><creator>WANG, Puming</creator><creator>JIA, Yujing</creator><creator>DIAO, Tianyi</creator><creator>SHANG, Qinghua</creator><creator>CHEN, Biyun</creator><creator>WEI, Shangfu</creator><creator>SHI, Xiaoqing</creator><creator>LIU, Guang</creator><creator>TANG, Xian</creator><creator>ZHU, Songyang</creator><creator>LI, Bin</creator><creator>WANG, Xinwen</creator><creator>WENG, Zonglong</creator><creator>ZHANG, Ge</creator><creator>ZHENG, Liqin</creator><creator>LI, Peijie</creator><creator>CHEN, Danlei</creator><scope>EVB</scope></search><sort><creationdate>20221110</creationdate><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><author>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022360079A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>LI, Yunyi</creatorcontrib><creatorcontrib>BAI, Xiaoqing</creatorcontrib><creatorcontrib>WANG, Rui</creatorcontrib><creatorcontrib>ZHU, Yun</creatorcontrib><creatorcontrib>WANG, Puming</creatorcontrib><creatorcontrib>JIA, Yujing</creatorcontrib><creatorcontrib>DIAO, Tianyi</creatorcontrib><creatorcontrib>SHANG, Qinghua</creatorcontrib><creatorcontrib>CHEN, Biyun</creatorcontrib><creatorcontrib>WEI, Shangfu</creatorcontrib><creatorcontrib>SHI, Xiaoqing</creatorcontrib><creatorcontrib>LIU, Guang</creatorcontrib><creatorcontrib>TANG, Xian</creatorcontrib><creatorcontrib>ZHU, Songyang</creatorcontrib><creatorcontrib>LI, Bin</creatorcontrib><creatorcontrib>WANG, Xinwen</creatorcontrib><creatorcontrib>WENG, Zonglong</creatorcontrib><creatorcontrib>ZHANG, Ge</creatorcontrib><creatorcontrib>ZHENG, Liqin</creatorcontrib><creatorcontrib>LI, Peijie</creatorcontrib><creatorcontrib>CHEN, Danlei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI, Yunyi</au><au>BAI, Xiaoqing</au><au>WANG, Rui</au><au>ZHU, Yun</au><au>WANG, Puming</au><au>JIA, Yujing</au><au>DIAO, Tianyi</au><au>SHANG, Qinghua</au><au>CHEN, Biyun</au><au>WEI, Shangfu</au><au>SHI, Xiaoqing</au><au>LIU, Guang</au><au>TANG, Xian</au><au>ZHU, Songyang</au><au>LI, Bin</au><au>WANG, Xinwen</au><au>WENG, Zonglong</au><au>ZHANG, Ge</au><au>ZHENG, Liqin</au><au>LI, Peijie</au><au>CHEN, Danlei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><date>2022-11-10</date><risdate>2022</risdate><abstract>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022360079A1
source esp@cenet
subjects CALCULATING
CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
COUNTING
ELECTRICITY
GENERATION
PHYSICS
SYSTEMS FOR STORING ELECTRIC ENERGY
title OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI,%20Yunyi&rft.date=2022-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022360079A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true