OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING
Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the d...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI, Yunyi BAI, Xiaoqing WANG, Rui ZHU, Yun WANG, Puming JIA, Yujing DIAO, Tianyi SHANG, Qinghua CHEN, Biyun WEI, Shangfu SHI, Xiaoqing LIU, Guang TANG, Xian ZHU, Songyang LI, Bin WANG, Xinwen WENG, Zonglong ZHANG, Ge ZHENG, Liqin LI, Peijie CHEN, Danlei |
description | Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022360079A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022360079A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022360079A13</originalsourceid><addsrcrecordid>eNqNzEEKwjAQheFuXIh6hwHXQm1BcZk2kzYYO3WSUFyVInElWqjg9Q3oAVw9Hvx88-RNrdMnYaClDhmUoQ5EefaadVPBCV1NEhQxMFaamhhKbR3rwrt4oUHXER-BFNioGKgvkulrVUy-tVAIixJiKxFbMCi4ifQymd2G-xRWv10ka4WurDdhfPZhGodreIRX722WZlm-S9P9QWzz_6oPhQw6_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><source>esp@cenet</source><creator>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</creator><creatorcontrib>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</creatorcontrib><description>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</description><language>eng</language><subject>CALCULATING ; CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER ; COUNTING ; ELECTRICITY ; GENERATION ; PHYSICS ; SYSTEMS FOR STORING ELECTRIC ENERGY</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221110&DB=EPODOC&CC=US&NR=2022360079A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221110&DB=EPODOC&CC=US&NR=2022360079A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI, Yunyi</creatorcontrib><creatorcontrib>BAI, Xiaoqing</creatorcontrib><creatorcontrib>WANG, Rui</creatorcontrib><creatorcontrib>ZHU, Yun</creatorcontrib><creatorcontrib>WANG, Puming</creatorcontrib><creatorcontrib>JIA, Yujing</creatorcontrib><creatorcontrib>DIAO, Tianyi</creatorcontrib><creatorcontrib>SHANG, Qinghua</creatorcontrib><creatorcontrib>CHEN, Biyun</creatorcontrib><creatorcontrib>WEI, Shangfu</creatorcontrib><creatorcontrib>SHI, Xiaoqing</creatorcontrib><creatorcontrib>LIU, Guang</creatorcontrib><creatorcontrib>TANG, Xian</creatorcontrib><creatorcontrib>ZHU, Songyang</creatorcontrib><creatorcontrib>LI, Bin</creatorcontrib><creatorcontrib>WANG, Xinwen</creatorcontrib><creatorcontrib>WENG, Zonglong</creatorcontrib><creatorcontrib>ZHANG, Ge</creatorcontrib><creatorcontrib>ZHENG, Liqin</creatorcontrib><creatorcontrib>LI, Peijie</creatorcontrib><creatorcontrib>CHEN, Danlei</creatorcontrib><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><description>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</description><subject>CALCULATING</subject><subject>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</subject><subject>COUNTING</subject><subject>ELECTRICITY</subject><subject>GENERATION</subject><subject>PHYSICS</subject><subject>SYSTEMS FOR STORING ELECTRIC ENERGY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzEEKwjAQheFuXIh6hwHXQm1BcZk2kzYYO3WSUFyVInElWqjg9Q3oAVw9Hvx88-RNrdMnYaClDhmUoQ5EefaadVPBCV1NEhQxMFaamhhKbR3rwrt4oUHXER-BFNioGKgvkulrVUy-tVAIixJiKxFbMCi4ifQymd2G-xRWv10ka4WurDdhfPZhGodreIRX722WZlm-S9P9QWzz_6oPhQw6_A</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>LI, Yunyi</creator><creator>BAI, Xiaoqing</creator><creator>WANG, Rui</creator><creator>ZHU, Yun</creator><creator>WANG, Puming</creator><creator>JIA, Yujing</creator><creator>DIAO, Tianyi</creator><creator>SHANG, Qinghua</creator><creator>CHEN, Biyun</creator><creator>WEI, Shangfu</creator><creator>SHI, Xiaoqing</creator><creator>LIU, Guang</creator><creator>TANG, Xian</creator><creator>ZHU, Songyang</creator><creator>LI, Bin</creator><creator>WANG, Xinwen</creator><creator>WENG, Zonglong</creator><creator>ZHANG, Ge</creator><creator>ZHENG, Liqin</creator><creator>LI, Peijie</creator><creator>CHEN, Danlei</creator><scope>EVB</scope></search><sort><creationdate>20221110</creationdate><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><author>LI, Yunyi ; BAI, Xiaoqing ; WANG, Rui ; ZHU, Yun ; WANG, Puming ; JIA, Yujing ; DIAO, Tianyi ; SHANG, Qinghua ; CHEN, Biyun ; WEI, Shangfu ; SHI, Xiaoqing ; LIU, Guang ; TANG, Xian ; ZHU, Songyang ; LI, Bin ; WANG, Xinwen ; WENG, Zonglong ; ZHANG, Ge ; ZHENG, Liqin ; LI, Peijie ; CHEN, Danlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022360079A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONVERSION OR DISTRIBUTION OF ELECTRIC POWER</topic><topic>COUNTING</topic><topic>ELECTRICITY</topic><topic>GENERATION</topic><topic>PHYSICS</topic><topic>SYSTEMS FOR STORING ELECTRIC ENERGY</topic><toplevel>online_resources</toplevel><creatorcontrib>LI, Yunyi</creatorcontrib><creatorcontrib>BAI, Xiaoqing</creatorcontrib><creatorcontrib>WANG, Rui</creatorcontrib><creatorcontrib>ZHU, Yun</creatorcontrib><creatorcontrib>WANG, Puming</creatorcontrib><creatorcontrib>JIA, Yujing</creatorcontrib><creatorcontrib>DIAO, Tianyi</creatorcontrib><creatorcontrib>SHANG, Qinghua</creatorcontrib><creatorcontrib>CHEN, Biyun</creatorcontrib><creatorcontrib>WEI, Shangfu</creatorcontrib><creatorcontrib>SHI, Xiaoqing</creatorcontrib><creatorcontrib>LIU, Guang</creatorcontrib><creatorcontrib>TANG, Xian</creatorcontrib><creatorcontrib>ZHU, Songyang</creatorcontrib><creatorcontrib>LI, Bin</creatorcontrib><creatorcontrib>WANG, Xinwen</creatorcontrib><creatorcontrib>WENG, Zonglong</creatorcontrib><creatorcontrib>ZHANG, Ge</creatorcontrib><creatorcontrib>ZHENG, Liqin</creatorcontrib><creatorcontrib>LI, Peijie</creatorcontrib><creatorcontrib>CHEN, Danlei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI, Yunyi</au><au>BAI, Xiaoqing</au><au>WANG, Rui</au><au>ZHU, Yun</au><au>WANG, Puming</au><au>JIA, Yujing</au><au>DIAO, Tianyi</au><au>SHANG, Qinghua</au><au>CHEN, Biyun</au><au>WEI, Shangfu</au><au>SHI, Xiaoqing</au><au>LIU, Guang</au><au>TANG, Xian</au><au>ZHU, Songyang</au><au>LI, Bin</au><au>WANG, Xinwen</au><au>WENG, Zonglong</au><au>ZHANG, Ge</au><au>ZHENG, Liqin</au><au>LI, Peijie</au><au>CHEN, Danlei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING</title><date>2022-11-10</date><risdate>2022</risdate><abstract>Disclosed is an optimal power flow acquiring method for regional distribution network of small hydropower groups based on deep learning, which specifically includes the following steps: generating required data sets by adopting continuous power flow and power flow equation calculation methods; the data set is randomly divided into training data (80 percent) and test data (20 percent); training the built convolutional neural network model with training data to learn the mapping relationship between load and generator output power; inputting test data, and directly obtaining PG and QG from the trained convolutional neural network; and solving residual variables Vi and θi with traditional power flow solver. The application can accelerate the solving speed of the optimal power flow problem with higher prediction accuracy.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022360079A1 |
source | esp@cenet |
subjects | CALCULATING CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTINGELECTRIC POWER COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING CONVERSION OR DISTRIBUTION OF ELECTRIC POWER COUNTING ELECTRICITY GENERATION PHYSICS SYSTEMS FOR STORING ELECTRIC ENERGY |
title | OPTIMAL POWER FLOW ACQUIRING METHOD FOR REGIONAL DISTRIBUTION NETWORK OF SMALL HYDROPOWER GROUPS BASED ON DEEP LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI,%20Yunyi&rft.date=2022-11-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022360079A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |