Enhanced Disease Projections with Mobility
A mechanism is provided in a data processing system to implement a model pipeline for predicting changes in disease transmission rate using a spatial temporal epidemiological model. The mechanism receives input data comprising disease case data for a disease and mobility data and prepares the input...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Deshpande, Ajay Ashok Srinivasan, Raman Liu, Xuan Kaufman, James H Kefayati, Sarah Navalekar, Sayali Ding, Pan Moramganti, Ujwal Reddy Gopalakrishnan, Vishrawas Sirbu, George |
description | A mechanism is provided in a data processing system to implement a model pipeline for predicting changes in disease transmission rate using a spatial temporal epidemiological model. The mechanism receives input data comprising disease case data for a disease and mobility data and prepares the input data to generate a training dataset, a validation dataset, and a test dataset. A feature selection module performs feature selection on the input data to select a first set of features for a binary classification computer model, a second set of features for a three-level classification computer model, and a third set of features for a regression computer model. The mechanism determines a future predicted transmission rate value for the subsequent time period using the binary classification computer model, the three-level classification computer model, and the regression computer model and generates disease projections for the subsequent time period based on the future predicted transmission rate value and the spatial temporal epidemiological model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022336108A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022336108A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022336108A13</originalsourceid><addsrcrecordid>eNrjZNByzctIzEtOTVFwySxOTSxOVQgoys9KTS7JzM8rVijPLMlQ8M1PyszJLKnkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGxsZmhgYWjobGxKkCAMnnKeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Enhanced Disease Projections with Mobility</title><source>esp@cenet</source><creator>Deshpande, Ajay Ashok ; Srinivasan, Raman ; Liu, Xuan ; Kaufman, James H ; Kefayati, Sarah ; Navalekar, Sayali ; Ding, Pan ; Moramganti, Ujwal Reddy ; Gopalakrishnan, Vishrawas ; Sirbu, George</creator><creatorcontrib>Deshpande, Ajay Ashok ; Srinivasan, Raman ; Liu, Xuan ; Kaufman, James H ; Kefayati, Sarah ; Navalekar, Sayali ; Ding, Pan ; Moramganti, Ujwal Reddy ; Gopalakrishnan, Vishrawas ; Sirbu, George</creatorcontrib><description>A mechanism is provided in a data processing system to implement a model pipeline for predicting changes in disease transmission rate using a spatial temporal epidemiological model. The mechanism receives input data comprising disease case data for a disease and mobility data and prepares the input data to generate a training dataset, a validation dataset, and a test dataset. A feature selection module performs feature selection on the input data to select a first set of features for a binary classification computer model, a second set of features for a three-level classification computer model, and a third set of features for a regression computer model. The mechanism determines a future predicted transmission rate value for the subsequent time period using the binary classification computer model, the three-level classification computer model, and the regression computer model and generates disease projections for the subsequent time period based on the future predicted transmission rate value and the spatial temporal epidemiological model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221020&DB=EPODOC&CC=US&NR=2022336108A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221020&DB=EPODOC&CC=US&NR=2022336108A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Deshpande, Ajay Ashok</creatorcontrib><creatorcontrib>Srinivasan, Raman</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Kaufman, James H</creatorcontrib><creatorcontrib>Kefayati, Sarah</creatorcontrib><creatorcontrib>Navalekar, Sayali</creatorcontrib><creatorcontrib>Ding, Pan</creatorcontrib><creatorcontrib>Moramganti, Ujwal Reddy</creatorcontrib><creatorcontrib>Gopalakrishnan, Vishrawas</creatorcontrib><creatorcontrib>Sirbu, George</creatorcontrib><title>Enhanced Disease Projections with Mobility</title><description>A mechanism is provided in a data processing system to implement a model pipeline for predicting changes in disease transmission rate using a spatial temporal epidemiological model. The mechanism receives input data comprising disease case data for a disease and mobility data and prepares the input data to generate a training dataset, a validation dataset, and a test dataset. A feature selection module performs feature selection on the input data to select a first set of features for a binary classification computer model, a second set of features for a three-level classification computer model, and a third set of features for a regression computer model. The mechanism determines a future predicted transmission rate value for the subsequent time period using the binary classification computer model, the three-level classification computer model, and the regression computer model and generates disease projections for the subsequent time period based on the future predicted transmission rate value and the spatial temporal epidemiological model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNByzctIzEtOTVFwySxOTSxOVQgoys9KTS7JzM8rVijPLMlQ8M1PyszJLKnkYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkZGxsZmhgYWjobGxKkCAMnnKeQ</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Deshpande, Ajay Ashok</creator><creator>Srinivasan, Raman</creator><creator>Liu, Xuan</creator><creator>Kaufman, James H</creator><creator>Kefayati, Sarah</creator><creator>Navalekar, Sayali</creator><creator>Ding, Pan</creator><creator>Moramganti, Ujwal Reddy</creator><creator>Gopalakrishnan, Vishrawas</creator><creator>Sirbu, George</creator><scope>EVB</scope></search><sort><creationdate>20221020</creationdate><title>Enhanced Disease Projections with Mobility</title><author>Deshpande, Ajay Ashok ; Srinivasan, Raman ; Liu, Xuan ; Kaufman, James H ; Kefayati, Sarah ; Navalekar, Sayali ; Ding, Pan ; Moramganti, Ujwal Reddy ; Gopalakrishnan, Vishrawas ; Sirbu, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022336108A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Deshpande, Ajay Ashok</creatorcontrib><creatorcontrib>Srinivasan, Raman</creatorcontrib><creatorcontrib>Liu, Xuan</creatorcontrib><creatorcontrib>Kaufman, James H</creatorcontrib><creatorcontrib>Kefayati, Sarah</creatorcontrib><creatorcontrib>Navalekar, Sayali</creatorcontrib><creatorcontrib>Ding, Pan</creatorcontrib><creatorcontrib>Moramganti, Ujwal Reddy</creatorcontrib><creatorcontrib>Gopalakrishnan, Vishrawas</creatorcontrib><creatorcontrib>Sirbu, George</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deshpande, Ajay Ashok</au><au>Srinivasan, Raman</au><au>Liu, Xuan</au><au>Kaufman, James H</au><au>Kefayati, Sarah</au><au>Navalekar, Sayali</au><au>Ding, Pan</au><au>Moramganti, Ujwal Reddy</au><au>Gopalakrishnan, Vishrawas</au><au>Sirbu, George</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Enhanced Disease Projections with Mobility</title><date>2022-10-20</date><risdate>2022</risdate><abstract>A mechanism is provided in a data processing system to implement a model pipeline for predicting changes in disease transmission rate using a spatial temporal epidemiological model. The mechanism receives input data comprising disease case data for a disease and mobility data and prepares the input data to generate a training dataset, a validation dataset, and a test dataset. A feature selection module performs feature selection on the input data to select a first set of features for a binary classification computer model, a second set of features for a three-level classification computer model, and a third set of features for a regression computer model. The mechanism determines a future predicted transmission rate value for the subsequent time period using the binary classification computer model, the three-level classification computer model, and the regression computer model and generates disease projections for the subsequent time period based on the future predicted transmission rate value and the spatial temporal epidemiological model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022336108A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | Enhanced Disease Projections with Mobility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Deshpande,%20Ajay%20Ashok&rft.date=2022-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022336108A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |