METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING
Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploy...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Krishnamurthy, Raja Toney, Richard Nathan Canada, Matthew Craig, II, Jerry Allen Dass, Kathrine Veneruso, Stephen J Rigsby, David Anthony |
description | Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022335137A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022335137A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022335137A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4GzYBvEObYXG0wTyV1a6lKKxEm0UN8fFXwAp48f_rm41MiVL0G5Eqgjxhq0D-AwBmU_cOvDCUo8W9_V6BiMA_KaWxUQCIsYDHfQROswqIOx32IkNu64FLPbcJ_S6udCrDVyUW3S-OzTNA7X9EivPlK-zXMpd5ncq0z-d70BaWMzYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><source>esp@cenet</source><creator>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</creator><creatorcontrib>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</creatorcontrib><description>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221020&DB=EPODOC&CC=US&NR=2022335137A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20221020&DB=EPODOC&CC=US&NR=2022335137A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Krishnamurthy, Raja</creatorcontrib><creatorcontrib>Toney, Richard Nathan</creatorcontrib><creatorcontrib>Canada, Matthew</creatorcontrib><creatorcontrib>Craig, II, Jerry Allen</creatorcontrib><creatorcontrib>Dass, Kathrine</creatorcontrib><creatorcontrib>Veneruso, Stephen J</creatorcontrib><creatorcontrib>Rigsby, David Anthony</creatorcontrib><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><description>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4GzYBvEObYXG0wTyV1a6lKKxEm0UN8fFXwAp48f_rm41MiVL0G5Eqgjxhq0D-AwBmU_cOvDCUo8W9_V6BiMA_KaWxUQCIsYDHfQROswqIOx32IkNu64FLPbcJ_S6udCrDVyUW3S-OzTNA7X9EivPlK-zXMpd5ncq0z-d70BaWMzYQ</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Krishnamurthy, Raja</creator><creator>Toney, Richard Nathan</creator><creator>Canada, Matthew</creator><creator>Craig, II, Jerry Allen</creator><creator>Dass, Kathrine</creator><creator>Veneruso, Stephen J</creator><creator>Rigsby, David Anthony</creator><scope>EVB</scope></search><sort><creationdate>20221020</creationdate><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><author>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022335137A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, Raja</creatorcontrib><creatorcontrib>Toney, Richard Nathan</creatorcontrib><creatorcontrib>Canada, Matthew</creatorcontrib><creatorcontrib>Craig, II, Jerry Allen</creatorcontrib><creatorcontrib>Dass, Kathrine</creatorcontrib><creatorcontrib>Veneruso, Stephen J</creatorcontrib><creatorcontrib>Rigsby, David Anthony</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnamurthy, Raja</au><au>Toney, Richard Nathan</au><au>Canada, Matthew</au><au>Craig, II, Jerry Allen</au><au>Dass, Kathrine</au><au>Veneruso, Stephen J</au><au>Rigsby, David Anthony</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><date>2022-10-20</date><risdate>2022</risdate><abstract>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022335137A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Krishnamurthy,%20Raja&rft.date=2022-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022335137A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |