METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING

Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krishnamurthy, Raja, Toney, Richard Nathan, Canada, Matthew, Craig, II, Jerry Allen, Dass, Kathrine, Veneruso, Stephen J, Rigsby, David Anthony
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Krishnamurthy, Raja
Toney, Richard Nathan
Canada, Matthew
Craig, II, Jerry Allen
Dass, Kathrine
Veneruso, Stephen J
Rigsby, David Anthony
description Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022335137A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022335137A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022335137A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEsDqK-w4GzYBvEObYXG0wTyV1a6lKKxEm0UN8fFXwAp48f_rm41MiVL0G5Eqgjxhq0D-AwBmU_cOvDCUo8W9_V6BiMA_KaWxUQCIsYDHfQROswqIOx32IkNu64FLPbcJ_S6udCrDVyUW3S-OzTNA7X9EivPlK-zXMpd5ncq0z-d70BaWMzYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><source>esp@cenet</source><creator>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</creator><creatorcontrib>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</creatorcontrib><description>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221020&amp;DB=EPODOC&amp;CC=US&amp;NR=2022335137A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221020&amp;DB=EPODOC&amp;CC=US&amp;NR=2022335137A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Krishnamurthy, Raja</creatorcontrib><creatorcontrib>Toney, Richard Nathan</creatorcontrib><creatorcontrib>Canada, Matthew</creatorcontrib><creatorcontrib>Craig, II, Jerry Allen</creatorcontrib><creatorcontrib>Dass, Kathrine</creatorcontrib><creatorcontrib>Veneruso, Stephen J</creatorcontrib><creatorcontrib>Rigsby, David Anthony</creatorcontrib><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><description>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEsDqK-w4GzYBvEObYXG0wTyV1a6lKKxEm0UN8fFXwAp48f_rm41MiVL0G5Eqgjxhq0D-AwBmU_cOvDCUo8W9_V6BiMA_KaWxUQCIsYDHfQROswqIOx32IkNu64FLPbcJ_S6udCrDVyUW3S-OzTNA7X9EivPlK-zXMpd5ncq0z-d70BaWMzYQ</recordid><startdate>20221020</startdate><enddate>20221020</enddate><creator>Krishnamurthy, Raja</creator><creator>Toney, Richard Nathan</creator><creator>Canada, Matthew</creator><creator>Craig, II, Jerry Allen</creator><creator>Dass, Kathrine</creator><creator>Veneruso, Stephen J</creator><creator>Rigsby, David Anthony</creator><scope>EVB</scope></search><sort><creationdate>20221020</creationdate><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><author>Krishnamurthy, Raja ; Toney, Richard Nathan ; Canada, Matthew ; Craig, II, Jerry Allen ; Dass, Kathrine ; Veneruso, Stephen J ; Rigsby, David Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022335137A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnamurthy, Raja</creatorcontrib><creatorcontrib>Toney, Richard Nathan</creatorcontrib><creatorcontrib>Canada, Matthew</creatorcontrib><creatorcontrib>Craig, II, Jerry Allen</creatorcontrib><creatorcontrib>Dass, Kathrine</creatorcontrib><creatorcontrib>Veneruso, Stephen J</creatorcontrib><creatorcontrib>Rigsby, David Anthony</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnamurthy, Raja</au><au>Toney, Richard Nathan</au><au>Canada, Matthew</au><au>Craig, II, Jerry Allen</au><au>Dass, Kathrine</au><au>Veneruso, Stephen J</au><au>Rigsby, David Anthony</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING</title><date>2022-10-20</date><risdate>2022</risdate><abstract>Method and system of deploying a trained machine learning neural network in dynamic testing of security vulnerability in software applications. The method comprises directing, from a security assessing server computing device, to a software program under execution, a series of attack vectors, deploying a set of results produced in accordance with the software program under execution and the attack vectors to an input layer of the trained machine learning neural network, the trained machine learning neural network comprising an output layer that is interconnected with the input layer via a set of intermediate layers, and identifying, in accordance with a predetermined threshold percentage value of false positive software security vulnerability defects, one or more software security vulnerability defects associated with the results produced, the software security vulnerability defects being generated in accordance with the output layer of the trained machine learning neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022335137A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title METHOD AND SYSTEM FOR NEURAL NETWORK DEPLOYMENT IN SOFTWARE SECURITY VULNERABILITY TESTING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Krishnamurthy,%20Raja&rft.date=2022-10-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022335137A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true