AUTOMATIC DIGITAL ROCK SEGMENTATION

System and methods of automatic digital rock segmentation are provided. A deep learning model may be trained to segment images of reservoir rock. The training may involve the use of first image data of reservoir rock samples and first segmentation data mapping an intensity of image elements of the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Maximo, Andre de Almeida
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Maximo, Andre de Almeida
description System and methods of automatic digital rock segmentation are provided. A deep learning model may be trained to segment images of reservoir rock. The training may involve the use of first image data of reservoir rock samples and first segmentation data mapping an intensity of image elements of the first image data to one of a plurality of output channels that respectively represent a characterization of reservoir rock. Second image data of a new reservoir rock sample may be obtained, and an intensity of image elements of the second image data may be determined. Using the trained deep learning model, second segmentation data may be generated that maps the intensity of each image element in the second image data to a corresponding one of the plurality of output channels. The trained deep learning model may output a characterization of the new reservoir rock sample based on the second segmentation data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022327713A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022327713A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022327713A13</originalsourceid><addsrcrecordid>eNrjZFB2DA3x93UM8XRWcPF09wxx9FEI8nf2Vgh2dfd19QsBSvj78TCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI2Mjc3NDY0dDY-JUAQDudyO6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATIC DIGITAL ROCK SEGMENTATION</title><source>esp@cenet</source><creator>Maximo, Andre de Almeida</creator><creatorcontrib>Maximo, Andre de Almeida</creatorcontrib><description>System and methods of automatic digital rock segmentation are provided. A deep learning model may be trained to segment images of reservoir rock. The training may involve the use of first image data of reservoir rock samples and first segmentation data mapping an intensity of image elements of the first image data to one of a plurality of output channels that respectively represent a characterization of reservoir rock. Second image data of a new reservoir rock sample may be obtained, and an intensity of image elements of the second image data may be determined. Using the trained deep learning model, second segmentation data may be generated that maps the intensity of each image element in the second image data to a corresponding one of the plurality of output channels. The trained deep learning model may output a characterization of the new reservoir rock sample based on the second segmentation data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221013&amp;DB=EPODOC&amp;CC=US&amp;NR=2022327713A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221013&amp;DB=EPODOC&amp;CC=US&amp;NR=2022327713A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Maximo, Andre de Almeida</creatorcontrib><title>AUTOMATIC DIGITAL ROCK SEGMENTATION</title><description>System and methods of automatic digital rock segmentation are provided. A deep learning model may be trained to segment images of reservoir rock. The training may involve the use of first image data of reservoir rock samples and first segmentation data mapping an intensity of image elements of the first image data to one of a plurality of output channels that respectively represent a characterization of reservoir rock. Second image data of a new reservoir rock sample may be obtained, and an intensity of image elements of the second image data may be determined. Using the trained deep learning model, second segmentation data may be generated that maps the intensity of each image element in the second image data to a corresponding one of the plurality of output channels. The trained deep learning model may output a characterization of the new reservoir rock sample based on the second segmentation data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB2DA3x93UM8XRWcPF09wxx9FEI8nf2Vgh2dfd19QsBSvj78TCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjI2Mjc3NDY0dDY-JUAQDudyO6</recordid><startdate>20221013</startdate><enddate>20221013</enddate><creator>Maximo, Andre de Almeida</creator><scope>EVB</scope></search><sort><creationdate>20221013</creationdate><title>AUTOMATIC DIGITAL ROCK SEGMENTATION</title><author>Maximo, Andre de Almeida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022327713A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Maximo, Andre de Almeida</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maximo, Andre de Almeida</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATIC DIGITAL ROCK SEGMENTATION</title><date>2022-10-13</date><risdate>2022</risdate><abstract>System and methods of automatic digital rock segmentation are provided. A deep learning model may be trained to segment images of reservoir rock. The training may involve the use of first image data of reservoir rock samples and first segmentation data mapping an intensity of image elements of the first image data to one of a plurality of output channels that respectively represent a characterization of reservoir rock. Second image data of a new reservoir rock sample may be obtained, and an intensity of image elements of the second image data may be determined. Using the trained deep learning model, second segmentation data may be generated that maps the intensity of each image element in the second image data to a corresponding one of the plurality of output channels. The trained deep learning model may output a characterization of the new reservoir rock sample based on the second segmentation data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022327713A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
PHYSICS
title AUTOMATIC DIGITAL ROCK SEGMENTATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A18%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Maximo,%20Andre%20de%20Almeida&rft.date=2022-10-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022327713A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true