DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING

In an example embodiment an applications (apps) intelligence framework is utilized to quickly operationalize machine learned models (of different use cases, products, or applications) and take them to production through a set of predetermined pipelines. The app server may include a model configurati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rajagopalan, Nithya, Patel, Ashutosh, Ramakrishna, Panish, Kamboj, Mayank, Rao, Ranjith Pavanje Raja, Swami, Arjun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Rajagopalan, Nithya
Patel, Ashutosh
Ramakrishna, Panish
Kamboj, Mayank
Rao, Ranjith Pavanje Raja
Swami, Arjun
description In an example embodiment an applications (apps) intelligence framework is utilized to quickly operationalize machine learned models (of different use cases, products, or applications) and take them to production through a set of predetermined pipelines. The app server may include a model configuration component to allow an entity to configure a model for an entity's specific use case. This configuration is then passed to a model generation component in the machine learning component, which acts to generate the specific model for the entity's use case using the configuration. An intelligent scheduling component may then be used to schedule retraining of the specific model at particular intervals. Notably, the intelligent scheduling component is itself a machine learned model (in one example embodiment a neural network) that is trained to dynamically output a training interval for a particular model based on various features.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022318686A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022318686A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022318686A13</originalsourceid><addsrcrecordid>eNrjZPB1ifRz9PV0dvTxiVQIBlKOTj6uCr6Ozh6efq4KPq6OQX6efu4Kvv4urj4K7q5-rkGOIZ7-fgqOfi4KUK0KQa4hQY6eIHU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjI2NDCzMLM0dCYOFUAjkEvDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING</title><source>esp@cenet</source><creator>Rajagopalan, Nithya ; Patel, Ashutosh ; Ramakrishna, Panish ; Kamboj, Mayank ; Rao, Ranjith Pavanje Raja ; Swami, Arjun</creator><creatorcontrib>Rajagopalan, Nithya ; Patel, Ashutosh ; Ramakrishna, Panish ; Kamboj, Mayank ; Rao, Ranjith Pavanje Raja ; Swami, Arjun</creatorcontrib><description>In an example embodiment an applications (apps) intelligence framework is utilized to quickly operationalize machine learned models (of different use cases, products, or applications) and take them to production through a set of predetermined pipelines. The app server may include a model configuration component to allow an entity to configure a model for an entity's specific use case. This configuration is then passed to a model generation component in the machine learning component, which acts to generate the specific model for the entity's use case using the configuration. An intelligent scheduling component may then be used to schedule retraining of the specific model at particular intervals. Notably, the intelligent scheduling component is itself a machine learned model (in one example embodiment a neural network) that is trained to dynamically output a training interval for a particular model based on various features.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221006&amp;DB=EPODOC&amp;CC=US&amp;NR=2022318686A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20221006&amp;DB=EPODOC&amp;CC=US&amp;NR=2022318686A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Rajagopalan, Nithya</creatorcontrib><creatorcontrib>Patel, Ashutosh</creatorcontrib><creatorcontrib>Ramakrishna, Panish</creatorcontrib><creatorcontrib>Kamboj, Mayank</creatorcontrib><creatorcontrib>Rao, Ranjith Pavanje Raja</creatorcontrib><creatorcontrib>Swami, Arjun</creatorcontrib><title>DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING</title><description>In an example embodiment an applications (apps) intelligence framework is utilized to quickly operationalize machine learned models (of different use cases, products, or applications) and take them to production through a set of predetermined pipelines. The app server may include a model configuration component to allow an entity to configure a model for an entity's specific use case. This configuration is then passed to a model generation component in the machine learning component, which acts to generate the specific model for the entity's use case using the configuration. An intelligent scheduling component may then be used to schedule retraining of the specific model at particular intervals. Notably, the intelligent scheduling component is itself a machine learned model (in one example embodiment a neural network) that is trained to dynamically output a training interval for a particular model based on various features.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB1ifRz9PV0dvTxiVQIBlKOTj6uCr6Ozh6efq4KPq6OQX6efu4Kvv4urj4K7q5-rkGOIZ7-fgqOfi4KUK0KQa4hQY6eIHU8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjI2NDCzMLM0dCYOFUAjkEvDw</recordid><startdate>20221006</startdate><enddate>20221006</enddate><creator>Rajagopalan, Nithya</creator><creator>Patel, Ashutosh</creator><creator>Ramakrishna, Panish</creator><creator>Kamboj, Mayank</creator><creator>Rao, Ranjith Pavanje Raja</creator><creator>Swami, Arjun</creator><scope>EVB</scope></search><sort><creationdate>20221006</creationdate><title>DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING</title><author>Rajagopalan, Nithya ; Patel, Ashutosh ; Ramakrishna, Panish ; Kamboj, Mayank ; Rao, Ranjith Pavanje Raja ; Swami, Arjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022318686A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajagopalan, Nithya</creatorcontrib><creatorcontrib>Patel, Ashutosh</creatorcontrib><creatorcontrib>Ramakrishna, Panish</creatorcontrib><creatorcontrib>Kamboj, Mayank</creatorcontrib><creatorcontrib>Rao, Ranjith Pavanje Raja</creatorcontrib><creatorcontrib>Swami, Arjun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajagopalan, Nithya</au><au>Patel, Ashutosh</au><au>Ramakrishna, Panish</au><au>Kamboj, Mayank</au><au>Rao, Ranjith Pavanje Raja</au><au>Swami, Arjun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING</title><date>2022-10-06</date><risdate>2022</risdate><abstract>In an example embodiment an applications (apps) intelligence framework is utilized to quickly operationalize machine learned models (of different use cases, products, or applications) and take them to production through a set of predetermined pipelines. The app server may include a model configuration component to allow an entity to configure a model for an entity's specific use case. This configuration is then passed to a model generation component in the machine learning component, which acts to generate the specific model for the entity's use case using the configuration. An intelligent scheduling component may then be used to schedule retraining of the specific model at particular intervals. Notably, the intelligent scheduling component is itself a machine learned model (in one example embodiment a neural network) that is trained to dynamically output a training interval for a particular model based on various features.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022318686A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DYNAMICALLY SCALABLE MACHINE LEARNING MODEL GENERATION AND DYNAMIC RETRAINING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Rajagopalan,%20Nithya&rft.date=2022-10-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022318686A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true