Learning to Transform Sensitive Data with Variable Distribution Preservation
Preserving distributions of data values of a data asset in a data anonymization operation is provided. Anonymizing data values is performed by transforming sensitive data in a set of columns over rows of the data asset while preserving distribution of the data values in the set of transformed column...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Raphael, Roger C Desai, Rajesh M Qiao, Mu Natarajan, Arjun Aggarwal, Aniya KUNDU, ASHISH Payne, Joshua F |
description | Preserving distributions of data values of a data asset in a data anonymization operation is provided. Anonymizing data values is performed by transforming sensitive data in a set of columns over rows of the data asset while preserving distribution of the data values in the set of transformed columns to a defined degree using a set of autoencoders and loss function. The autoencoders are base trained from preexisting data in a data assets catalog and actively trained during data dissemination. Parametric coefficients of the loss function are configured and the threshold is generated using policies from an enforcement decision for the data asset and data consumer. The loss function value of a selected row is compared to the threshold. Transformed data values of the selected row are transcribed to an output row when the loss function value is greater than the threshold and disseminated to the data consumer. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022311749A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022311749A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022311749A13</originalsourceid><addsrcrecordid>eNrjZPDxSU0sysvMS1coyVcIKUrMK07LL8pVCE7NK84sySxLVXBJLElUKM8syVAISyzKTEzKAQplFpcUZSaVlmTm5ykEFKUWpxaVJYI4PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNjQ0NzE0tHQmDhVAIq1Nww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Learning to Transform Sensitive Data with Variable Distribution Preservation</title><source>esp@cenet</source><creator>Raphael, Roger C ; Desai, Rajesh M ; Qiao, Mu ; Natarajan, Arjun ; Aggarwal, Aniya ; KUNDU, ASHISH ; Payne, Joshua F</creator><creatorcontrib>Raphael, Roger C ; Desai, Rajesh M ; Qiao, Mu ; Natarajan, Arjun ; Aggarwal, Aniya ; KUNDU, ASHISH ; Payne, Joshua F</creatorcontrib><description>Preserving distributions of data values of a data asset in a data anonymization operation is provided. Anonymizing data values is performed by transforming sensitive data in a set of columns over rows of the data asset while preserving distribution of the data values in the set of transformed columns to a defined degree using a set of autoencoders and loss function. The autoencoders are base trained from preexisting data in a data assets catalog and actively trained during data dissemination. Parametric coefficients of the loss function are configured and the threshold is generated using policies from an enforcement decision for the data asset and data consumer. The loss function value of a selected row is compared to the threshold. Transformed data values of the selected row are transcribed to an output row when the loss function value is greater than the threshold and disseminated to the data consumer.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220929&DB=EPODOC&CC=US&NR=2022311749A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220929&DB=EPODOC&CC=US&NR=2022311749A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Raphael, Roger C</creatorcontrib><creatorcontrib>Desai, Rajesh M</creatorcontrib><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Natarajan, Arjun</creatorcontrib><creatorcontrib>Aggarwal, Aniya</creatorcontrib><creatorcontrib>KUNDU, ASHISH</creatorcontrib><creatorcontrib>Payne, Joshua F</creatorcontrib><title>Learning to Transform Sensitive Data with Variable Distribution Preservation</title><description>Preserving distributions of data values of a data asset in a data anonymization operation is provided. Anonymizing data values is performed by transforming sensitive data in a set of columns over rows of the data asset while preserving distribution of the data values in the set of transformed columns to a defined degree using a set of autoencoders and loss function. The autoencoders are base trained from preexisting data in a data assets catalog and actively trained during data dissemination. Parametric coefficients of the loss function are configured and the threshold is generated using policies from an enforcement decision for the data asset and data consumer. The loss function value of a selected row is compared to the threshold. Transformed data values of the selected row are transcribed to an output row when the loss function value is greater than the threshold and disseminated to the data consumer.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDxSU0sysvMS1coyVcIKUrMK07LL8pVCE7NK84sySxLVXBJLElUKM8syVAISyzKTEzKAQplFpcUZSaVlmTm5ykEFKUWpxaVJYI4PAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIyNjQ0NzE0tHQmDhVAIq1Nww</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Raphael, Roger C</creator><creator>Desai, Rajesh M</creator><creator>Qiao, Mu</creator><creator>Natarajan, Arjun</creator><creator>Aggarwal, Aniya</creator><creator>KUNDU, ASHISH</creator><creator>Payne, Joshua F</creator><scope>EVB</scope></search><sort><creationdate>20220929</creationdate><title>Learning to Transform Sensitive Data with Variable Distribution Preservation</title><author>Raphael, Roger C ; Desai, Rajesh M ; Qiao, Mu ; Natarajan, Arjun ; Aggarwal, Aniya ; KUNDU, ASHISH ; Payne, Joshua F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022311749A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Raphael, Roger C</creatorcontrib><creatorcontrib>Desai, Rajesh M</creatorcontrib><creatorcontrib>Qiao, Mu</creatorcontrib><creatorcontrib>Natarajan, Arjun</creatorcontrib><creatorcontrib>Aggarwal, Aniya</creatorcontrib><creatorcontrib>KUNDU, ASHISH</creatorcontrib><creatorcontrib>Payne, Joshua F</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Raphael, Roger C</au><au>Desai, Rajesh M</au><au>Qiao, Mu</au><au>Natarajan, Arjun</au><au>Aggarwal, Aniya</au><au>KUNDU, ASHISH</au><au>Payne, Joshua F</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Learning to Transform Sensitive Data with Variable Distribution Preservation</title><date>2022-09-29</date><risdate>2022</risdate><abstract>Preserving distributions of data values of a data asset in a data anonymization operation is provided. Anonymizing data values is performed by transforming sensitive data in a set of columns over rows of the data asset while preserving distribution of the data values in the set of transformed columns to a defined degree using a set of autoencoders and loss function. The autoencoders are base trained from preexisting data in a data assets catalog and actively trained during data dissemination. Parametric coefficients of the loss function are configured and the threshold is generated using policies from an enforcement decision for the data asset and data consumer. The loss function value of a selected row is compared to the threshold. Transformed data values of the selected row are transcribed to an output row when the loss function value is greater than the threshold and disseminated to the data consumer.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022311749A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Learning to Transform Sensitive Data with Variable Distribution Preservation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Raphael,%20Roger%20C&rft.date=2022-09-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022311749A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |