ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES

A neural network is trained to segment interferogram images. A first plurality of interferograms are obtained, where each interferograms corresponds to data acquired by an OCT system using a first scan pattern, annotating each of the plurality of interferograms to indicate a tissue structure of a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: STOLLER, Cyril, BUSCEMI, Philip M, WYDER, Stephan, PFISTER, Matthias
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator STOLLER, Cyril
BUSCEMI, Philip M
WYDER, Stephan
PFISTER, Matthias
description A neural network is trained to segment interferogram images. A first plurality of interferograms are obtained, where each interferograms corresponds to data acquired by an OCT system using a first scan pattern, annotating each of the plurality of interferograms to indicate a tissue structure of a retina, training a neural network using the plurality of interferograms and the annotations, inputting a second plurality of interferograms corresponding to data acquired by an OCT system using a second scan pattern and obtaining an output of the trained neural network indicating the tissue structure of the retina that was scanned using the second scan pattern. The system and methods may instead receive a plurality of A-scans and output a segmented image corresponding to a plurality of locations along an OCT scan pattern.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022301161A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022301161A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022301161A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQANAsDqL-Q8BZaFJwP8IlOUhyJU2FTqVInEQL9f9RxA9wesvbigi5kCVDECSlgiGQw2RQWs4SLxAGKMRJspXcFTKfZthj_p7CkV2Gzo-SIjjs92Jzm-9rPfzciaPFYvypLs-prst8rY_6moZeN1q3jVJnBar9b70BqaEvIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES</title><source>esp@cenet</source><creator>STOLLER, Cyril ; BUSCEMI, Philip M ; WYDER, Stephan ; PFISTER, Matthias</creator><creatorcontrib>STOLLER, Cyril ; BUSCEMI, Philip M ; WYDER, Stephan ; PFISTER, Matthias</creatorcontrib><description>A neural network is trained to segment interferogram images. A first plurality of interferograms are obtained, where each interferograms corresponds to data acquired by an OCT system using a first scan pattern, annotating each of the plurality of interferograms to indicate a tissue structure of a retina, training a neural network using the plurality of interferograms and the annotations, inputting a second plurality of interferograms corresponding to data acquired by an OCT system using a second scan pattern and obtaining an output of the trained neural network indicating the tissue structure of the retina that was scanned using the second scan pattern. The system and methods may instead receive a plurality of A-scans and output a segmented image corresponding to a plurality of locations along an OCT scan pattern.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220922&amp;DB=EPODOC&amp;CC=US&amp;NR=2022301161A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220922&amp;DB=EPODOC&amp;CC=US&amp;NR=2022301161A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>STOLLER, Cyril</creatorcontrib><creatorcontrib>BUSCEMI, Philip M</creatorcontrib><creatorcontrib>WYDER, Stephan</creatorcontrib><creatorcontrib>PFISTER, Matthias</creatorcontrib><title>ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES</title><description>A neural network is trained to segment interferogram images. A first plurality of interferograms are obtained, where each interferograms corresponds to data acquired by an OCT system using a first scan pattern, annotating each of the plurality of interferograms to indicate a tissue structure of a retina, training a neural network using the plurality of interferograms and the annotations, inputting a second plurality of interferograms corresponding to data acquired by an OCT system using a second scan pattern and obtaining an output of the trained neural network indicating the tissue structure of the retina that was scanned using the second scan pattern. The system and methods may instead receive a plurality of A-scans and output a segmented image corresponding to a plurality of locations along an OCT scan pattern.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQANAsDqL-Q8BZaFJwP8IlOUhyJU2FTqVInEQL9f9RxA9wesvbigi5kCVDECSlgiGQw2RQWs4SLxAGKMRJspXcFTKfZthj_p7CkV2Gzo-SIjjs92Jzm-9rPfzciaPFYvypLs-prst8rY_6moZeN1q3jVJnBar9b70BqaEvIw</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>STOLLER, Cyril</creator><creator>BUSCEMI, Philip M</creator><creator>WYDER, Stephan</creator><creator>PFISTER, Matthias</creator><scope>EVB</scope></search><sort><creationdate>20220922</creationdate><title>ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES</title><author>STOLLER, Cyril ; BUSCEMI, Philip M ; WYDER, Stephan ; PFISTER, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022301161A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>STOLLER, Cyril</creatorcontrib><creatorcontrib>BUSCEMI, Philip M</creatorcontrib><creatorcontrib>WYDER, Stephan</creatorcontrib><creatorcontrib>PFISTER, Matthias</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>STOLLER, Cyril</au><au>BUSCEMI, Philip M</au><au>WYDER, Stephan</au><au>PFISTER, Matthias</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES</title><date>2022-09-22</date><risdate>2022</risdate><abstract>A neural network is trained to segment interferogram images. A first plurality of interferograms are obtained, where each interferograms corresponds to data acquired by an OCT system using a first scan pattern, annotating each of the plurality of interferograms to indicate a tissue structure of a retina, training a neural network using the plurality of interferograms and the annotations, inputting a second plurality of interferograms corresponding to data acquired by an OCT system using a second scan pattern and obtaining an output of the trained neural network indicating the tissue structure of the retina that was scanned using the second scan pattern. The system and methods may instead receive a plurality of A-scans and output a segmented image corresponding to a plurality of locations along an OCT scan pattern.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022301161A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title ARTIFICIAL INTELLIGENCE FOR EVALUATION OF OPTICAL COHERENCE TOMOGRAPHY IMAGES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=STOLLER,%20Cyril&rft.date=2022-09-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022301161A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true