METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS

Methods, apparatus, systems, and articles of manufacture to perform low overhead sparsity acceleration logic for multi-precision dataflow in deep neural network accelerators are disclosed. An example apparatus includes a first buffer to store data corresponding to a first precision; a second buffer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Langhammer, Martin, Tunali, Nihat, Mohapatra, Debabrata, Raha, Arnab, Wu, Michael
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Langhammer, Martin
Tunali, Nihat
Mohapatra, Debabrata
Raha, Arnab
Wu, Michael
description Methods, apparatus, systems, and articles of manufacture to perform low overhead sparsity acceleration logic for multi-precision dataflow in deep neural network accelerators are disclosed. An example apparatus includes a first buffer to store data corresponding to a first precision; a second buffer to store data corresponding to a second precision; and hardware control circuitry to: process a first multibit bitmap to determine an activation precision of an activation value, the first multibit bitmap including values corresponding to different precisions; process a second multibit bitmap to determine a weight precision of a weight value, the second multibit bitmap including values corresponding to different precisions; and store the activation value and the weight value in the second buffer when at least one of the activation precision or the weight precision corresponds to the second precision.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022292366A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022292366A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022292366A13</originalsourceid><addsrcrecordid>eNqNzL0KwjAUBeAuDqK-wwXngqZQcLwktzaYNiE_FqdSJE6ihfoUPrUpCK5O58D5OMvs3ZCvtXCArQA0Bi364MBrMGQrbRtQugN9JlsTCnAJOOkvgJyTooSlbhM5Sg5JQxOUl7mxxKWbF4Eeq_lBpk5koKVgUaXwnban3422bp0tbsN9iptvrrJtRZ7XeRyffZzG4Rof8dUHx3aMsQMryhL3xX_qA_-3QDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS</title><source>esp@cenet</source><creator>Langhammer, Martin ; Tunali, Nihat ; Mohapatra, Debabrata ; Raha, Arnab ; Wu, Michael</creator><creatorcontrib>Langhammer, Martin ; Tunali, Nihat ; Mohapatra, Debabrata ; Raha, Arnab ; Wu, Michael</creatorcontrib><description>Methods, apparatus, systems, and articles of manufacture to perform low overhead sparsity acceleration logic for multi-precision dataflow in deep neural network accelerators are disclosed. An example apparatus includes a first buffer to store data corresponding to a first precision; a second buffer to store data corresponding to a second precision; and hardware control circuitry to: process a first multibit bitmap to determine an activation precision of an activation value, the first multibit bitmap including values corresponding to different precisions; process a second multibit bitmap to determine a weight precision of a weight value, the second multibit bitmap including values corresponding to different precisions; and store the activation value and the weight value in the second buffer when at least one of the activation precision or the weight precision corresponds to the second precision.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220915&amp;DB=EPODOC&amp;CC=US&amp;NR=2022292366A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220915&amp;DB=EPODOC&amp;CC=US&amp;NR=2022292366A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Langhammer, Martin</creatorcontrib><creatorcontrib>Tunali, Nihat</creatorcontrib><creatorcontrib>Mohapatra, Debabrata</creatorcontrib><creatorcontrib>Raha, Arnab</creatorcontrib><creatorcontrib>Wu, Michael</creatorcontrib><title>METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS</title><description>Methods, apparatus, systems, and articles of manufacture to perform low overhead sparsity acceleration logic for multi-precision dataflow in deep neural network accelerators are disclosed. An example apparatus includes a first buffer to store data corresponding to a first precision; a second buffer to store data corresponding to a second precision; and hardware control circuitry to: process a first multibit bitmap to determine an activation precision of an activation value, the first multibit bitmap including values corresponding to different precisions; process a second multibit bitmap to determine a weight precision of a weight value, the second multibit bitmap including values corresponding to different precisions; and store the activation value and the weight value in the second buffer when at least one of the activation precision or the weight precision corresponds to the second precision.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzL0KwjAUBeAuDqK-wwXngqZQcLwktzaYNiE_FqdSJE6ihfoUPrUpCK5O58D5OMvs3ZCvtXCArQA0Bi364MBrMGQrbRtQugN9JlsTCnAJOOkvgJyTooSlbhM5Sg5JQxOUl7mxxKWbF4Eeq_lBpk5koKVgUaXwnban3422bp0tbsN9iptvrrJtRZ7XeRyffZzG4Rof8dUHx3aMsQMryhL3xX_qA_-3QDE</recordid><startdate>20220915</startdate><enddate>20220915</enddate><creator>Langhammer, Martin</creator><creator>Tunali, Nihat</creator><creator>Mohapatra, Debabrata</creator><creator>Raha, Arnab</creator><creator>Wu, Michael</creator><scope>EVB</scope></search><sort><creationdate>20220915</creationdate><title>METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS</title><author>Langhammer, Martin ; Tunali, Nihat ; Mohapatra, Debabrata ; Raha, Arnab ; Wu, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022292366A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Langhammer, Martin</creatorcontrib><creatorcontrib>Tunali, Nihat</creatorcontrib><creatorcontrib>Mohapatra, Debabrata</creatorcontrib><creatorcontrib>Raha, Arnab</creatorcontrib><creatorcontrib>Wu, Michael</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Langhammer, Martin</au><au>Tunali, Nihat</au><au>Mohapatra, Debabrata</au><au>Raha, Arnab</au><au>Wu, Michael</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS</title><date>2022-09-15</date><risdate>2022</risdate><abstract>Methods, apparatus, systems, and articles of manufacture to perform low overhead sparsity acceleration logic for multi-precision dataflow in deep neural network accelerators are disclosed. An example apparatus includes a first buffer to store data corresponding to a first precision; a second buffer to store data corresponding to a second precision; and hardware control circuitry to: process a first multibit bitmap to determine an activation precision of an activation value, the first multibit bitmap including values corresponding to different precisions; process a second multibit bitmap to determine a weight precision of a weight value, the second multibit bitmap including values corresponding to different precisions; and store the activation value and the weight value in the second buffer when at least one of the activation precision or the weight precision corresponds to the second precision.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022292366A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title METHODS AND APPARATUS TO PERFORM LOW OVERHEAD SPARSITY ACCELERATION LOGIC FOR MULTI-PRECISION DATAFLOW IN DEEP NEURAL NETWORK ACCELERATORS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Langhammer,%20Martin&rft.date=2022-09-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022292366A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true