FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL

A system and computer-implemented method are provided for generating a visualization of the classification uncertainty of a classification model which is applied to clinical data, wherein said visualization is provided in a lower-dimensional space which is obtained by applying a non-linear and manif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PEZZOTTI, Nicola, KUSTRA, Jacek Lukasz
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PEZZOTTI, Nicola
KUSTRA, Jacek Lukasz
description A system and computer-implemented method are provided for generating a visualization of the classification uncertainty of a classification model which is applied to clinical data, wherein said visualization is provided in a lower-dimensional space which is obtained by applying a non-linear and manifold preserving dimensionality reduction technique to feature vectors of the clinical data. The visualization techniques consider the classification model as a 'black box' by not being dependent on internal parameters of the classification model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022285024A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022285024A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022285024A13</originalsourceid><addsrcrecordid>eNrjZDB1c3T29PEMcQzx9HNX8PQLcQ0KCHINcXQCCUYq-LspOPs4Bgd7unk6A5X4-yn4-ru4-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjC1MDIxNHQ2PiVAEArk0o0g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL</title><source>esp@cenet</source><creator>PEZZOTTI, Nicola ; KUSTRA, Jacek Lukasz</creator><creatorcontrib>PEZZOTTI, Nicola ; KUSTRA, Jacek Lukasz</creatorcontrib><description>A system and computer-implemented method are provided for generating a visualization of the classification uncertainty of a classification model which is applied to clinical data, wherein said visualization is provided in a lower-dimensional space which is obtained by applying a non-linear and manifold preserving dimensionality reduction technique to feature vectors of the clinical data. The visualization techniques consider the classification model as a 'black box' by not being dependent on internal parameters of the classification model.</description><language>eng</language><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220908&amp;DB=EPODOC&amp;CC=US&amp;NR=2022285024A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220908&amp;DB=EPODOC&amp;CC=US&amp;NR=2022285024A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PEZZOTTI, Nicola</creatorcontrib><creatorcontrib>KUSTRA, Jacek Lukasz</creatorcontrib><title>FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL</title><description>A system and computer-implemented method are provided for generating a visualization of the classification uncertainty of a classification model which is applied to clinical data, wherein said visualization is provided in a lower-dimensional space which is obtained by applying a non-linear and manifold preserving dimensionality reduction technique to feature vectors of the clinical data. The visualization techniques consider the classification model as a 'black box' by not being dependent on internal parameters of the classification model.</description><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1c3T29PEMcQzx9HNX8PQLcQ0KCHINcXQCCUYq-LspOPs4Bgd7unk6A5X4-yn4-ru4-vAwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIyMjC1MDIxNHQ2PiVAEArk0o0g</recordid><startdate>20220908</startdate><enddate>20220908</enddate><creator>PEZZOTTI, Nicola</creator><creator>KUSTRA, Jacek Lukasz</creator><scope>EVB</scope></search><sort><creationdate>20220908</creationdate><title>FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL</title><author>PEZZOTTI, Nicola ; KUSTRA, Jacek Lukasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022285024A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PEZZOTTI, Nicola</creatorcontrib><creatorcontrib>KUSTRA, Jacek Lukasz</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PEZZOTTI, Nicola</au><au>KUSTRA, Jacek Lukasz</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL</title><date>2022-09-08</date><risdate>2022</risdate><abstract>A system and computer-implemented method are provided for generating a visualization of the classification uncertainty of a classification model which is applied to clinical data, wherein said visualization is provided in a lower-dimensional space which is obtained by applying a non-linear and manifold preserving dimensionality reduction technique to feature vectors of the clinical data. The visualization techniques consider the classification model as a 'black box' by not being dependent on internal parameters of the classification model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022285024A1
source esp@cenet
subjects HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title FACILITATING INTERPRETABILITY OF CLASSIFICATION MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PEZZOTTI,%20Nicola&rft.date=2022-09-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022285024A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true