GROUND TRUTH DATA GENERATION FOR DEEP NEURAL NETWORK PERCEPTION IN AUTONOMOUS DRIVING APPLICATIONS

An annotation pipeline may be used to produce 2D and/or 3D ground truth data for deep neural networks, such as autonomous or semi-autonomous vehicle perception networks. Initially, sensor data may be captured with different types of sensors and synchronized to align frames of sensor data that repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wekel, Tilman, Pehserl, Joachim, Meyer, Jacob, Monroe, Grant, Whitcomb, Richard, Guza, Jake, Nister, David, Mitrokhin, Anton, Scoffier, Marco
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An annotation pipeline may be used to produce 2D and/or 3D ground truth data for deep neural networks, such as autonomous or semi-autonomous vehicle perception networks. Initially, sensor data may be captured with different types of sensors and synchronized to align frames of sensor data that represent a similar world state. The aligned frames may be sampled and packaged into a sequence of annotation scenes to be annotated. An annotation project may be decomposed into modular tasks and encoded into a labeling tool, which assigns tasks to labelers and arranges the order of inputs using a wizard that steps through the tasks. During the tasks, each type of sensor data in an annotation scene may be simultaneously presented, and information may be projected across sensor modalities to provide useful contextual information. After all annotation tasks have been completed, the resulting ground truth data may be exported in any suitable format.