USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB
Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning p...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Saussy, Juliana Jones, Timothy Qureshi, Shehzad Ash, Stephen Michael Borthwick, Andrew Damle, Prajakta Datta Heinermann, Adam Lawrence Joseph Gupta, Anurag Windlass Kommaranahalli Rudramuni, Chethan Desai, Alaykumar Navinchandra Shah, Mehul A Maynard-Zhang, Pedrito Uriah Shah, Mehul Y Sharma, Abhishek Dobroshinsky, Sergei |
description | Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022261413A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022261413A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022261413A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRbtxIeo_DLgWbCrup3GSjrRJyGNdisaVaKH-P7bgB7g6cDn3rIt7Cmw0BEeSFdMFHHllfYdGEmCMnusUKUC0IK1RrJMn6FA2bAhaQm-Wu2NHrl2mEFHP-pwANECxhautt8XqMTynvPtxU-wVRdkc8vju8zQOt_zKnz4FcRRCnMtTWWFZ_Wd9ASHINUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><source>esp@cenet</source><creator>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</creator><creatorcontrib>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</creatorcontrib><description>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220818&DB=EPODOC&CC=US&NR=2022261413A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220818&DB=EPODOC&CC=US&NR=2022261413A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Saussy, Juliana</creatorcontrib><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Qureshi, Shehzad</creatorcontrib><creatorcontrib>Ash, Stephen Michael</creatorcontrib><creatorcontrib>Borthwick, Andrew</creatorcontrib><creatorcontrib>Damle, Prajakta Datta</creatorcontrib><creatorcontrib>Heinermann, Adam Lawrence Joseph</creatorcontrib><creatorcontrib>Gupta, Anurag Windlass</creatorcontrib><creatorcontrib>Kommaranahalli Rudramuni, Chethan</creatorcontrib><creatorcontrib>Desai, Alaykumar Navinchandra</creatorcontrib><creatorcontrib>Shah, Mehul A</creatorcontrib><creatorcontrib>Maynard-Zhang, Pedrito Uriah</creatorcontrib><creatorcontrib>Shah, Mehul Y</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Dobroshinsky, Sergei</creatorcontrib><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><description>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAQRbtxIeo_DLgWbCrup3GSjrRJyGNdisaVaKH-P7bgB7g6cDn3rIt7Cmw0BEeSFdMFHHllfYdGEmCMnusUKUC0IK1RrJMn6FA2bAhaQm-Wu2NHrl2mEFHP-pwANECxhautt8XqMTynvPtxU-wVRdkc8vju8zQOt_zKnz4FcRRCnMtTWWFZ_Wd9ASHINUU</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Saussy, Juliana</creator><creator>Jones, Timothy</creator><creator>Qureshi, Shehzad</creator><creator>Ash, Stephen Michael</creator><creator>Borthwick, Andrew</creator><creator>Damle, Prajakta Datta</creator><creator>Heinermann, Adam Lawrence Joseph</creator><creator>Gupta, Anurag Windlass</creator><creator>Kommaranahalli Rudramuni, Chethan</creator><creator>Desai, Alaykumar Navinchandra</creator><creator>Shah, Mehul A</creator><creator>Maynard-Zhang, Pedrito Uriah</creator><creator>Shah, Mehul Y</creator><creator>Sharma, Abhishek</creator><creator>Dobroshinsky, Sergei</creator><scope>EVB</scope></search><sort><creationdate>20220818</creationdate><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><author>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022261413A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Saussy, Juliana</creatorcontrib><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Qureshi, Shehzad</creatorcontrib><creatorcontrib>Ash, Stephen Michael</creatorcontrib><creatorcontrib>Borthwick, Andrew</creatorcontrib><creatorcontrib>Damle, Prajakta Datta</creatorcontrib><creatorcontrib>Heinermann, Adam Lawrence Joseph</creatorcontrib><creatorcontrib>Gupta, Anurag Windlass</creatorcontrib><creatorcontrib>Kommaranahalli Rudramuni, Chethan</creatorcontrib><creatorcontrib>Desai, Alaykumar Navinchandra</creatorcontrib><creatorcontrib>Shah, Mehul A</creatorcontrib><creatorcontrib>Maynard-Zhang, Pedrito Uriah</creatorcontrib><creatorcontrib>Shah, Mehul Y</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Dobroshinsky, Sergei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saussy, Juliana</au><au>Jones, Timothy</au><au>Qureshi, Shehzad</au><au>Ash, Stephen Michael</au><au>Borthwick, Andrew</au><au>Damle, Prajakta Datta</au><au>Heinermann, Adam Lawrence Joseph</au><au>Gupta, Anurag Windlass</au><au>Kommaranahalli Rudramuni, Chethan</au><au>Desai, Alaykumar Navinchandra</au><au>Shah, Mehul A</au><au>Maynard-Zhang, Pedrito Uriah</au><au>Shah, Mehul Y</au><au>Sharma, Abhishek</au><au>Dobroshinsky, Sergei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><date>2022-08-18</date><risdate>2022</risdate><abstract>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2022261413A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Saussy,%20Juliana&rft.date=2022-08-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022261413A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |