USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB

Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Saussy, Juliana, Jones, Timothy, Qureshi, Shehzad, Ash, Stephen Michael, Borthwick, Andrew, Damle, Prajakta Datta, Heinermann, Adam Lawrence Joseph, Gupta, Anurag Windlass, Kommaranahalli Rudramuni, Chethan, Desai, Alaykumar Navinchandra, Shah, Mehul A, Maynard-Zhang, Pedrito Uriah, Shah, Mehul Y, Sharma, Abhishek, Dobroshinsky, Sergei
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Saussy, Juliana
Jones, Timothy
Qureshi, Shehzad
Ash, Stephen Michael
Borthwick, Andrew
Damle, Prajakta Datta
Heinermann, Adam Lawrence Joseph
Gupta, Anurag Windlass
Kommaranahalli Rudramuni, Chethan
Desai, Alaykumar Navinchandra
Shah, Mehul A
Maynard-Zhang, Pedrito Uriah
Shah, Mehul Y
Sharma, Abhishek
Dobroshinsky, Sergei
description Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2022261413A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2022261413A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2022261413A13</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRbtxIeo_DLgWbCrup3GSjrRJyGNdisaVaKH-P7bgB7g6cDn3rIt7Cmw0BEeSFdMFHHllfYdGEmCMnusUKUC0IK1RrJMn6FA2bAhaQm-Wu2NHrl2mEFHP-pwANECxhautt8XqMTynvPtxU-wVRdkc8vju8zQOt_zKnz4FcRRCnMtTWWFZ_Wd9ASHINUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><source>esp@cenet</source><creator>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</creator><creatorcontrib>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</creatorcontrib><description>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220818&amp;DB=EPODOC&amp;CC=US&amp;NR=2022261413A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220818&amp;DB=EPODOC&amp;CC=US&amp;NR=2022261413A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Saussy, Juliana</creatorcontrib><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Qureshi, Shehzad</creatorcontrib><creatorcontrib>Ash, Stephen Michael</creatorcontrib><creatorcontrib>Borthwick, Andrew</creatorcontrib><creatorcontrib>Damle, Prajakta Datta</creatorcontrib><creatorcontrib>Heinermann, Adam Lawrence Joseph</creatorcontrib><creatorcontrib>Gupta, Anurag Windlass</creatorcontrib><creatorcontrib>Kommaranahalli Rudramuni, Chethan</creatorcontrib><creatorcontrib>Desai, Alaykumar Navinchandra</creatorcontrib><creatorcontrib>Shah, Mehul A</creatorcontrib><creatorcontrib>Maynard-Zhang, Pedrito Uriah</creatorcontrib><creatorcontrib>Shah, Mehul Y</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Dobroshinsky, Sergei</creatorcontrib><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><description>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjMsKwjAQRbtxIeo_DLgWbCrup3GSjrRJyGNdisaVaKH-P7bgB7g6cDn3rIt7Cmw0BEeSFdMFHHllfYdGEmCMnusUKUC0IK1RrJMn6FA2bAhaQm-Wu2NHrl2mEFHP-pwANECxhautt8XqMTynvPtxU-wVRdkc8vju8zQOt_zKnz4FcRRCnMtTWWFZ_Wd9ASHINUU</recordid><startdate>20220818</startdate><enddate>20220818</enddate><creator>Saussy, Juliana</creator><creator>Jones, Timothy</creator><creator>Qureshi, Shehzad</creator><creator>Ash, Stephen Michael</creator><creator>Borthwick, Andrew</creator><creator>Damle, Prajakta Datta</creator><creator>Heinermann, Adam Lawrence Joseph</creator><creator>Gupta, Anurag Windlass</creator><creator>Kommaranahalli Rudramuni, Chethan</creator><creator>Desai, Alaykumar Navinchandra</creator><creator>Shah, Mehul A</creator><creator>Maynard-Zhang, Pedrito Uriah</creator><creator>Shah, Mehul Y</creator><creator>Sharma, Abhishek</creator><creator>Dobroshinsky, Sergei</creator><scope>EVB</scope></search><sort><creationdate>20220818</creationdate><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><author>Saussy, Juliana ; Jones, Timothy ; Qureshi, Shehzad ; Ash, Stephen Michael ; Borthwick, Andrew ; Damle, Prajakta Datta ; Heinermann, Adam Lawrence Joseph ; Gupta, Anurag Windlass ; Kommaranahalli Rudramuni, Chethan ; Desai, Alaykumar Navinchandra ; Shah, Mehul A ; Maynard-Zhang, Pedrito Uriah ; Shah, Mehul Y ; Sharma, Abhishek ; Dobroshinsky, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2022261413A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Saussy, Juliana</creatorcontrib><creatorcontrib>Jones, Timothy</creatorcontrib><creatorcontrib>Qureshi, Shehzad</creatorcontrib><creatorcontrib>Ash, Stephen Michael</creatorcontrib><creatorcontrib>Borthwick, Andrew</creatorcontrib><creatorcontrib>Damle, Prajakta Datta</creatorcontrib><creatorcontrib>Heinermann, Adam Lawrence Joseph</creatorcontrib><creatorcontrib>Gupta, Anurag Windlass</creatorcontrib><creatorcontrib>Kommaranahalli Rudramuni, Chethan</creatorcontrib><creatorcontrib>Desai, Alaykumar Navinchandra</creatorcontrib><creatorcontrib>Shah, Mehul A</creatorcontrib><creatorcontrib>Maynard-Zhang, Pedrito Uriah</creatorcontrib><creatorcontrib>Shah, Mehul Y</creatorcontrib><creatorcontrib>Sharma, Abhishek</creatorcontrib><creatorcontrib>Dobroshinsky, Sergei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saussy, Juliana</au><au>Jones, Timothy</au><au>Qureshi, Shehzad</au><au>Ash, Stephen Michael</au><au>Borthwick, Andrew</au><au>Damle, Prajakta Datta</au><au>Heinermann, Adam Lawrence Joseph</au><au>Gupta, Anurag Windlass</au><au>Kommaranahalli Rudramuni, Chethan</au><au>Desai, Alaykumar Navinchandra</au><au>Shah, Mehul A</au><au>Maynard-Zhang, Pedrito Uriah</au><au>Shah, Mehul Y</au><au>Sharma, Abhishek</au><au>Dobroshinsky, Sergei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB</title><date>2022-08-18</date><risdate>2022</risdate><abstract>Specified performance attributes may be used to configure machine learning transformations for ETL jobs. Performance attributes for a machine learning pipeline that applies a model to as part of a transformation for an ETL job may be used to configure a parameter in a stage of the machine learning pipeline. The configured stage may then be used when training the model. The trained machine learning pipeline may then be applied as part of a transformation operation included in an ETL job performed by the ETL system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2022261413A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title USING SPECIFIED PERFORMANCE ATTRIBUTES TO CONFIGURE MACHINE LEARNING PIPEPLINE STAGES FOR AN ETL JOB
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A46%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Saussy,%20Juliana&rft.date=2022-08-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2022261413A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true